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FREE GROUPOIDS WITH 2y’ = zy
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Abstract

The main results of the paper are Theorems 1, 2, 3. Theorem 1
gives a canonical description of free objects in the variety U, of
groupoids which satisfy the identity zy? = zy. In Theorem 2
the class of U, —free groupoids is characterized within the class of
U, —injective groupoids, which is larger than the class of U, free
groupoidsa #nal | in Theorem 3, it is shown that the class of
U, —free groupoids is hereditary, and that a i, —free groupoid with
rank 2 contains subgroupoids with infinite rank.

0. Introduction

Throughout the paper we denote by F' = (F), -) a free groupoid (in the
class of all groupoids) with a given basis B. It is well-known (for example
[1; I.1]) that the following two properties characterize F':

a) F' is injeclive, i.e. the mapping -:(a,b) — ab s an injection from
] ) pping
F? into F.

(b) The set B of primes in F generates F. (If G = (G, -) is a groupoid,
and a € G\ GG, then we say that a is a prime in G.)

As usual, if G = (G, -) is a groupoid, and = is a positive integer, then
the transformation z — 2™ is defined as follows:
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=1z, g+l = gkg (0.1)

An element a € G is called a proper power in G iff there exist a b € G
and n €N, n > 2 (N is the set of positive integers), such that a = b".
Then we say that b is a base, and n is an ezponent of ¢ in G.

It can be easily shown by (a) and (0.1) that, if u is a proper power in
F', the base ¢t = u and exponent n = ex(u) are unique. If u € F is not a
proper power in F', then we say that u is the base of u in F, and write
u = u; in this case, 1 is the ezponent of uw in F.

Notions as subgroupoids, homomorphisms, variety of groupoids, ...
have usual meanings ([2]).

Now we can state the main results of the paper.

THEOREM 1. Let R = (R, ) be defined as follows:

BCRCF & Vu,veF){wweR & u,veR & v=1v}, (0.2)
(Vu,ve R)usxv=un. (0.3)

Then R is a free groupoid in U, with the (unique) basis B.
(We say that R is a canonical U, —groupoid.)

In order to state Th.2, we will define the notion of U,—injectivity.
Namely, we say that a groupoid H = (H, -) € U, is U,—injective iff it
satisfies the following conditions:

1) (Va€ H, n eN) a # a™t!.

2) For each a € HH there is a unique pair (b, ¢c) € H?* such that
a = bc and:

2.1) (Yd € H, n eN) ¢# drtl,

22) (W', e H)[a=bc = b =b & (! = c™, for some m > 1)].

In this case we say that b is the left and c is the right divisor of a
(or shortly: (b, ¢) is the pair of divisors of a) and we write b | a, ¢ | a.

sequence a;, az, ... of elements of H is called a divisor chain in H iff
a;41 | a; whenever a;;, is a member of the sequence.

In Section 2 we give a complete description of the class of U, —injective
groupoids, and show that it is larger than the class of U,—free 1) groupoids.
The following property is a description of U,.—free groupoids within the class
of U,—injective groupoids.

THEOREM 2. [If H — (H,-) is a U.—injective groupoid, then the
Jollowing conditions are equivalent:

1) We will often say U, free groupoid” instead of "free groupoid in U,.”.
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(i) H is U,~[ree.

(ii) There is a mapping | |:a+ |a| from H into the set N of positive
integers such that: b|a = |b| < |al.

(iii) Every divisor chain in H 1is finite.

(iv) The set B of primes in H generates H.
Then B is the basis of H.

THEOREM 3. (1) The class of U,—injective groupoids and the class of
U, ~free groupoids are hereditary.

(2) If H is a U.—free groupoid with rank one, then each subgroupoid
of H 1is infinite and isomorphic to H.

(3) If H is a U,—free groupoid with rank two, then there exists sub-
groupoids of H with infinite rank.

Theorem ¢ (i = 1, 2, 3) (beside other auxiliary results) will be proved
in Section .

SOME REMARKS

1. The axion zy* = zy of U, suggests to consider the rewriting system
(RS) on F induced by the elementary transformation uwv? — uv. Clearly,
this system is terminating (T) but it is not Church-Rosser (CR) one (see

[5; 2.9, 3.5]). For example, we have: a-a?a® — a-d*a and a-a?a® =

a(a?)? — aa® — a*. But, if we allow each transformation of the form
uv® — wv, where k > 2, then we would obtain the corresponding RS
which is a convenient TCR. We note that RS—s induced by z?y* — (zy)?
(i.e. 2™ — z) are convenient TCR for the variety V, (V) defined by

2’y = (2y)* (@" =z, n22).

2. In [3], [4] corresponding Th. 1, Th.2, Th.3 for the varieties V, and
V are shown. The formulation of these theorems for V, ([3]) and V ([1])
are almost the same as for U, except Th.3 for V, (the class of V,—free
groupoids is not hereditary).

3. Denote by U, the variety of groupoids with the identity z?y = zy.
Clearly:

G=0G, el & G =(G,0)ely,

where z o y = yz. Therefore, each U,—property can be translated into
corresponding U -property.
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1. Canonical U,—groupoids

A proof of Th. 1 will be given below.
First, let « +— |u| be the homomorphism from F into the groupoid
(N, +) which is an extension of B — {1}. Then:

bl=1 fuv| = [ul + o], (L.1)

for any b€ B and u, v € F. (We say that |u| is the norm of u € I.) By
induction on norm, the following relation can be easily shown:
(Vu, vEF, pgeN) [t =v*t! o u=v,p=¢, (12
and this implies that » — u, where u is the base of u, is a well defined
transformation of F', such that

(Vve Flop=1n. (1.3)

Moreover, (0.2), (0.3) and (1.1) imply:
veER = veR, (1.4)
n>2 = (v"ER & v=v€R), (1.5)

(Vu,v€R) |ul+ 1< |u|+ |v] < lu*xv| < |u|+ |v], :
(16)
luxv|=|ul+|v] & v=1.

As a corollary from (0.2), (0.3) and (1.4) we obtain:
1.1. *: R? — R is a well defined mapping, i.e. R is a groupoid. O

Moreover, from (0.3) and (1.3) we obtain:

(Vu,v€ R) ux(v*v)=u*x(vy)=uvn=uv=u*v.
Therefore:
1.2. Rel,. O
It is also clear that:
1.3. B is the least generating subset of R. O

In completing the proof of Th.1 we will use the next two properties of
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1.4. The following identities hold in U,:

'I,yn = zy, ',L,ml.n e wm+l’ (mm)n i mv)z—}—vz—17

for any n, m € N.

Proof. Assuming zy" = xy, we obtain:
11.'yn+1 — 2. yny = - yuyn . J/_(y'n))‘z " g[,yn =zy.
The other two identities are trivial corollaries of the first one. O

1.5. I G = (G, ) € Uy, and ¢ is a homomorphism from F into G,
then:

(Vu,v € F) p(uv) = o(uv).
Proof. Let u, v € F be such that ex(v) = n,i.e. v = (v)". Then:

o(uv) = p(u) p(v)=p(u) p(()") =¢(v) ¢(()" = ¢(u) () =p(up). O

From 1.5 we obtain the following corollary:

1.6. Let G = (G,-) €U, \:B — G and ¢ be the homomorphism
from F into G which extends X\. Then the restriction 1 of ¢ on R 1is
a homomorphism from R into G, which exlends X. O

Finally, Th.1 is a corollary of 1.2, 1.3 and 1.6.

The following properties will be used in the next sections.

1.7. R is U, ~injective and (v, w) is the pair of divisors of u € R+ R
uf

lu| = |v| + |w] .

Proof. If w € R, k € N, then we denote by u% the k-th power of u

in R,i.e.
i =u, ut = ke, (1.7)

By (1.6), we have: n > 2 = |u}| > |u|, and this implies that the condition
1) from Section 0 holds. If u € R*R, then u = v¥w = vw, where v, w € R
and w = w. Then w = v *+w' iff v/ = v and w' = w = w. This implies
that the condition 2) of Section 0 is satisfied, as well. O

The following two properties are also clear.
1.8. If the operation e is defined in N as follows:
(Vm,neN) men=m+1, (L.8)
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then (N, e) is a U,—free grupoid with the basis {1}. The family of
subgroupoids of (N, e) is infinite, and each of them is isomorphic to
(N,e). O

1.9. If G =(G, ) €Uy, and a € G, then the subgroupoid Q =< a >
of G generated by a is determined as follows:

Q={a"|neN}, ama"=a™". (1.9)
And, Q 1is U.—free with basis {a} iff:
(Vm,neN) (a™=a" = m=mn).0 (1.10)

(As usual we say that <a> is the cyclic subgroupoid of G, generated
by a.)

2. U,—injective groupoids

Below we assume that H = (H, -) is a U,-injective groupoid, and:
a,b,e,de H, m,n, k eN.

Using the implication: zy = 2'y’ = « = 2', and the definition of the
class of U,—injective groupoids, the statements that follow can be easily
shown.

a"=b" = ax=b. (2.1)
R S T (2.2)
a" =4t m =R, | (2.3)

As a collorary of 1.9 and (2.3), we obtain:

2.1. The subgroupoid < a > of H, generated by a € H 1is U,—free
with the basis {a}. O

2.2. For every a € H there is a unique pair (b, n), such that
ged® and e - el

(As in the groupoid F we say that b is the base and n the exponent
of a, and use the following notations: b= a, n = ex(a).)

Proof. Assume that there exists a pair (b, n), such that @ =" and
n > 2. Then, the right divisor ¢ of a is the base of a. From b"~'b =
b»—1c it follows that there exists m € N such that b = ¢, and therefore
a = (c™)" = ¢™t""1 which implies that ex(a)=m +n —1. .0

The following two statements are clear.
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(") =a, ex(a™)=m—1+ex(a). (2.4)
el -t e o (2.5)

As a corollary from 2.1 and (2.5) we obtain: »

2.3. A eyclic subgroupoid <a> of H is marimal iff a = a; and, any
two distinct mazimal cyclic subgroupoids of H are disjoint. O
24. Ifa=a, b=0b, a#b, n €N and ¢ = a™b, then ¢ = c.

Proof. Assume that ¢ = d # ¢. Then ¢ = d™t!, where m 4 1 =
ex(c) > 2, and therefore b = d, a™ = d™; by (2.5), a" = d™ implies
¢=a=d=d=b, a contradiction. O

2.5. If the subset A C H is defined by
A={a|la€ H}, (2.6)
then A is either singleton or infinite.

Proof. If A contains at least two distinct elements, then by 2.4, A
is infinite. O
2.6. Lel v be the mapping from (HxN) x H into Il defined by
d)((a, n), b) = a™b, (2:7)
and
D=(AxN)x A\ {((a¢,n),a) |a€ A, neN}, (2.8)
where A is defined in (2.6). Then the restriction ¢ of 1 on D is injeclive
and ime C A.

: Proof. The inclusion im@ C A follows from 2.4. If a,b, ¢, d € A,
m,n € N are such that ¢« # b, ¢ # d, a"b = c™d, then b = d, and
a™ = ¢™, and therefore: @ = ¢, m = n. (Note that if A is a singleton set,
then D=0.) O

The last result suggests the following construction.

Let A be a singleton or an infinite set, and let M = AXN, where
the equality (a, 1) = a, for each a € A is assumed. Let ¢: ((a, n), b) —
¢((a, n), b) be an injection from the set (2.8) into A. Define an operation
e on M as follows:

(a, m)e(a,n)=(a, m+1), (2.9)
a#b = (a,m)e(b,n)=¢((e,m),b). (2.10)

Denote by (A, ¢) the groupoid M = (M, o).
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The following characterization of U, —injective groupoids can be easlily
shown.

2.7. (A, @) is a Up—injective groupoid, such that
A={(a,n)|a€e A neN}, (2.6')

and A\ ime is the sct of primes in (A, @). .

Conversely, let H be a U, injective groupoid and A be defined by
(2.6). Then H is isomorphic to (A, ¢). where ¢ is the restriction on D
of the mapping 1, defined by (2.7). O

2.8. The class of U.—free groupoids is a proper subclass of the class of
U, —injective groupoids.

Proof. By 1.7, the class of ,—free groupoids is a subclass of the
class of U,—injective groupoids. Let A be an infinite set. Then there exist

groupoids (A, ¢) such that imp = A, and thus the set of primes in (4, ¢)
is empty. Therefore (A, ¢) is not U,—free. O

2.9. A groupoid (A, p) s U.—free iff the set of primes generates
(A, )

Proof. If (A, ¢)is U,—free, then the set of primes generates (A, ¢) by
Th.1. Assume that B = A\ ume (the set of primes in (A, ¢)) generates
(A, ). By 2.1,if B = {b} is 'singleton set, (A, ¢) is U,~free. It remains
the case when B contains a! least two distincet elements. Then, A is
infinite.

Define a sequence of sets {B, | k > 1} as follows: B = By,

¢ € By & ¢=p((a,n),b), (2.11)
where:

a#b, neN, a€eB;, beB;, i,j<k, ke{ij}. (2:12)

The relations Bnimp = @, imp C A, (2.11), (2.12), and the fact that
@ is injective, imply:

Bipan(U{B: |1<iLk}) =10, (2.13)

and U{Byx | k > 1} = A, where the union is disjoint.
Let G € U, and A\: B — (7. Deline a set of mappings
{ag: By — G | k > 1} as follows:

a; = A, apy1(d) = ai(e)"a;(b), (2.14)

where d = g:v(((a, &5 b)) € Dy, a € P, be B, » €N
There is a unigue mapping a: A — & such that, for cach & € N, oy

is the restriction of o on By. Finally, the mapping A: (A, ¢) -- G defined
by:
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X((a, ) = a(a)”
is a homomorphism which extends A. O

Now we can complete the proof of Th.2.

Assume that H is a U,.—injective groupoid.

By 1.7, (i) = (ii). (Namely, if H is U,—fuee, then it is isomorphic
to the coresponding canonical U,—groupoid.) Clearly, (ii) = (iii).

Assume that H satifies (iii), i.e. every divisor chain in H is finite.
From the U,—injectivity of H, it follows that any element of H has at
most two distinct divisors, and this, by an application of Konig Lemma
(for example [6; 381] or [7; 4]) implies that the set of divisor chains in
H with the same first member a is finite. Then the last members of such
maximal divisor chains are primes in H and a belongs to the subgroupoid
generated by them. Therefore, the set B of primes in H generates H.
Thus (iii) = (iv). From 2.8 we also obtain that (iv) = (i). This
completes the proof of Th.2. O

3. Subgroupoids of i,—free groupoids

The following statement is ”a half” of the first part of Th.3.
3.1. The class of U,—injective groupoids is hereditary.

Proof. Let H be a U.—injective groupoid and @ a subgroupoid of
H. We will show that Q is U,—injective . Clearly, the condition 1), in the
definition of the class of U, —injective groupoids, is hereditary, and thus it
remains to show that Q satisfies the condition 2).

Let a € QQ. Then there exist o', ¢/ € @ such that a = b'c’. If (b, ¢)
is the pair of divisors of @ in H, then b =10, and ¢’ = ¢", for a (unique)
n €N. Let k be the least positive integer such that d = c* € Q. Then
k< n and ¢ = d*~*t!. This implies that @ satisfies the condition 2)
as well. Namely, if a € Q@Q, and (b, ¢) is the pair of divisors of ¢ in H,
then (b, c¥) is the pair of divisors of @ in Q. O

In 3.2 and 3.3 we assume that H is a U,—injective groupoid, and Q
a subgoupoid of H.

3.2. If a € Q, and a, is the base of a in Q, then there is a (unique)
k € N such that a , = (a)k, where a is the base of a in H. O

3.3. If a € Q is such that ay = a = (a)*, where k > 2, then a is
prime in Q.

Proof. Namely, the assumption that ¢ = (a)* is not a prime in @
would imply that (¢)*~1 € Q. O
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3.4. If Q is a subgroupoid of a U,.—free groupoid H, then the set P
of primes in Q generates Q.

Proof. By 1.7 H is U,—injective and there exists a mapping a + |a|
from H into N such that: if a € HH and (b, ¢) is the pair of divisors of
a in H, then |a| = |b] + |¢|. By 3.1, Q is U, injective, and if a € QQ
and (b, ¢) is the pair of divisors of a in H, thten there exists a (unique)
k € N such that (b, c*) is the pair of divisors of a in Q.

Let m be the least positive integer such that @ N{a | @« € I,
|a| = m} = S is non-empty. Then S C P and thus P # 0. Denote
by T the subgroupoid of @ generated by P, and assume that

aeQ & |la|]<n = a€eT.

Let a € Q and |a|] = n+ 1. We will show that a € T. Clearly,
a € P = acT,and thus we can assume that a € QQ. Let (b, ¢) be
the pair of divisors of @ in H. By 1.7, we have |a| = |b| + |¢| and thus
[b], |¢| < m. By the proof of 3.1, there is a (unique) k& € N such that
(b, ¢*) is the pair of divisors of a in @, and thus b, ¥ € @, and [b| < n.
If k=1, then ¢ € Q as well, and thus a € T. Finally, if £ > 2, then by
3.3, ¢* € P, and therefore a = bc* € T. O

Now we can complete the proof of the first part of Th. 3.
3.5. The class of U, free groupoids is hereditary.

~ Proof. Let Q be a subgroupoid of a U,—free groupoid H. By 1.7,
3.1, 3.4 and Th.2, Q is U, free. O

The second part of Th.3 follows from 1.8, and the third one is a
corollary from the following proposition.

3.6. Let: H = (H, ) be a U.—free groupoid, a,b € H be such that
a=a#b=)b and C = {Cy | k = 1} -be defined by:

c1 = ab, Ck+1 — Ck-b . (‘52)
Then the subgroupoid Q generated by C' is U, free with infinite rank.

Proof. By 3.5, Q is U,—free. By induction on m + n, one can show
that: ¢, = ¢, < m =n, and thus C is infinite. Clearly a« ¢ Q, b ¢ Q,
and this implies that C' coincides with the set of primes in Q. (Namely,
(a, b) is the pair of divisors of ¢; in H, and a ¢ Q, b ¢ Q; this implies
that ¢; is a prime in @Q; assuming that ¢, is a prime in @, we obtain in
the same way that cx4q is also prime in Q. O
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CJIOBOIHU I'PYIIOUIIN CO zy* = zy

2

I'. Yynorna*, H. llemakockm™*

Pezume

I'naBnuTe pesyinararu Bo paboraBa ce Teopemure 1, 2 u 3. Bo
TeopeMaTa 1 ce maBa KaHOHUYEH OIMC Ha cioboHUTEe 00JeKTH BO MHO-
ryobpasmeto U, ol IpyLOUIA KOUIITO 'O 3aJ0BOJYyBaaT MICHTUTETOT
zy? = xy. Bo Teopemara 2 e oKapakTepU3upaHa KilacaTa U, cio-
OOIHV TPYIOUIN BO paMKUTe HA KiacaTa U, WHJeKTUBHU I'DYHOMIN.
Ha kpajot, Bo Teopemata 3 e mokaxkaHO IeKa ceKoja Ol CIOMeHaTUTe
Kilach e Haclle[Ha U IeKa cekoj U,—cinobolieH TPYyNoul co panr 2 co-
IP¥U MOATPYIOUIN CO DeCKOHeUeH PaHr.
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