FREE GROUPOIDS WITH $xy^2 = xy$

G. Čupona*, N. Celakoski **

Abstract

The main results of the paper are Theorems 1, 2, 3. Theorem 1 gives a canonical description of free objects in the variety \mathcal{U}_r of groupoids which satisfy the identity $xy^2=xy$. In Theorem 2 the class of \mathcal{U}_r -free groupoids is characterized within the class of \mathcal{U}_r -injective groupoids, which is larger than the class of \mathcal{U}_r -free groupoids \mathbb{H} and , in Theorem 3, it is shown that the class of \mathcal{U}_r -free groupoids is hereditary, and that a \mathcal{U}_r -free groupoid with rank 2 contains subgroupoids with infinite rank.

O. Introduction

Throughout the paper we denote by $F = (F, \cdot)$ a free groupoid (in the class of all groupoids) with a given basis B. It is well-known (for example [1; I.1]) that the following two properties characterize F:

- (a) F is injective, i.e. the mapping $\cdot:(a,b)\mapsto ab$ is an injection from F^2 into F.
- (b) The set B of primes in \mathbf{F} generates \mathbf{F} . (If $\mathbf{G} = (G, \cdot)$ is a groupoid, and $a \in G \setminus GG$, then we say that a is a prime in \mathbf{G} .)

As usual, if $G = (G, \cdot)$ is a groupoid, and n is a positive integer, then the transformation $x \mapsto x^n$ is defined as follows:

$$x^1 = x \,, \qquad x^{k+1} = x^k x \,. \tag{0.1}$$

An element $a \in G$ is called a *proper power* in G iff there exist a $b \in G$ and $n \in \mathbb{N}$, $n \geq 2$ (\mathbb{N} is the set of positive integers), such that $a = b^n$. Then we say that b is a *base*, and n is an *exponent* of a in G.

It can be easily shown by (a) and (0.1) that, if u is a proper power in F, the base $t = \underline{u}$ and exponent $n = \operatorname{ex}(u)$ are unique. If $u \in F$ is not a proper power in F, then we say that u is the base of u in F, and write $\underline{u} = u$; in this case, 1 is the exponent of u in F.

Notions as subgroupoids, homomorphisms, variety of groupoids, ...

have usual meanings ([2]).

Now we can state the main results of the paper.

THEOREM 1. Let $\mathbf{R} = (R, *)$ be defined as follows:

$$B \subset R \subset F \& (\forall u, v \in F) \{uv \in R \Leftrightarrow u, v \in R \& \underline{v} = v\}, (0.2)$$
$$(\forall u, v \in R) u * v = u\underline{v}.$$
(0.3)

Then \mathbf{R} is a free groupoid in \mathcal{U}_r with the (unique) basis B. (We say that \mathbf{R} is a canonical \mathcal{U}_r -groupoid.)

In order to state Th.2, we will define the notion of \mathcal{U}_r -injectivity. Namely, we say that a groupoid $\mathbf{H}=(H,\cdot)\in\mathcal{U}_r$ is \mathcal{U}_r -injective iff it satisfies the following conditions:

- 1) $(\forall a \in H, n \in \mathbb{N})$ $a \neq a^{n+1}$.
- 2) For each $a \in HH$ there is a unique pair $(b,c) \in H^2$ such that a = bc and:
 - 2.1) $(\forall d \in H, n \in \mathbb{N})$ $c \neq d^{n+1}$.
 - 2.2) $(\forall b', c' \in H) [a = b'c' \Rightarrow b' = b \& (c' = c^m, \text{ for some } m \ge 1)].$

In this case we say that b is the left and c is the right divisor of a (or shortly: (b, c) is the pair of divisors of a) and we write $b \mid a, c \mid a$. A sequence a_1, a_2, \ldots of elements of H is called a divisor chain in H iff $a_{i+1} \mid a_i$ whenever a_{i+1} is a member of the sequence.

In Section 2 we give a complete description of the class of \mathcal{U}_r -injective groupoids, and show that it is larger than the class of \mathcal{U}_r -free ¹⁾ groupoids. The following property is a description of \mathcal{U}_r -free groupoids within the class of \mathcal{U}_r -injective groupoids.

THEOREM 2. If $\mathbf{H} = (H, \cdot)$ is a \mathcal{U}_r -injective groupoid, then the following conditions are equivalent:

We will often say " U_r -free groupoid" instead of "free groupoid in U_r ".

- (i) H is U_r -free.
- (ii) There is a mapping $| : a \mapsto |a|$ from H into the set \mathbb{N} of positive integers such that: $b \mid a \Rightarrow |b| < |a|$.
 - (iii) Every divisor chain in **H** is finite.
 - (iv) The set B of primes in H generates H. Then B is the basis of H.

THEOREM 3. (1) The class of U_r -injective groupoids and the class of U_r -free groupoids are hereditary.

- (2) If \mathbf{H} is a \mathcal{U}_r -free groupoid with rank one, then each subgroupoid of \mathbf{H} is infinite and isomorphic to \mathbf{H} .
- (3) If \mathbf{H} is a \mathcal{U}_r -free groupoid with rank two, then there exists subgroupoids of \mathbf{H} with infinite rank.

Theorem $i \ (i=1,\,2,\,3)$ (beside other auxiliary results) will be proved in Section i.

SOME REMARKS

- 1. The axion $xy^2 = xy$ of \mathcal{U}_r suggests to consider the rewriting system (RS) on F induced by the elementary transformation $uv^2 \to uv$. Clearly, this system is terminating (T) but it is not Church-Rosser (CR) one (see [5; 2.9, 3.5]). For example, we have: $a \cdot a^2a^2 \to a \cdot a^2a$ and $a \cdot a^2a^2 = a(a^2)^2 \to aa^2 \to a^2$. But, if we allow each transformation of the form $uv^k \to uv$, where $k \geq 2$, then we would obtain the corresponding RS which is a convenient TCR. We note that RS-s induced by $x^2y^2 \to (xy)^2$ (i.e. $x^n \to x$) are convenient TCR for the variety \mathcal{V}_2 (\mathcal{V}) defined by $x^2y^2 = (xy)^2$ ($x^n = x$, $n \geq 2$).
- 2. In [3], [4] corresponding Th.1, Th.2, Th.3 for the varieties V_2 and V are shown. The formulation of these theorems for V_2 ([3]) and V ([4]) are almost the same as for U_r , except Th.3 for V_2 (the class of V_2 -free groupoids is not hereditary).
- 3. Denote by \mathcal{U}_l the variety of groupoids with the identity $x^2y = xy$. Clearly:

$$G = (G, \cdot) \in \mathcal{U}_l \Leftrightarrow G^{op} = (G, \circ) \in \mathcal{U}_r$$

where $x \circ y = yx$. Therefore, each \mathcal{U}_r -property can be translated into corresponding \mathcal{U}_r -property.

1. Canonical U_r -groupoids

A proof of Th. 1 will be given below.

First, let $u \mapsto |u|$ be the homomorphism from F into the groupoid $(\mathbb{N}, +)$ which is an extension of $B \to \{1\}$. Then:

$$|b| = 1$$
 $|uv| = |u| + |v|,$ (1.1)

for any $b \in B$ and $u, v \in F$. (We say that |u| is the *norm* of $u \in F$.) By induction on norm, the following relation can be easily shown:

 $(\forall u, v \in F, p, q \in \mathbb{N}) [u^{p+1} = v^{q+1} \Rightarrow u = v, p = q],$ and this implies that $u \mapsto \underline{u}$, where \underline{u} is the base of u, is a well defined transformation of F, such that

$$(\forall v \in F) v \underline{v} = \underline{v}. \tag{1.3}$$

Moreover, (0.2), (0.3) and (1.1) imply:

$$v \in R \Rightarrow \underline{v} \in R, \tag{1.4}$$

$$n \ge 2 \Rightarrow (v^n \in R \Leftrightarrow v = \underline{v} \in R),$$
 (1.5)

$$(\forall u, v \in R) |u| + 1 \le |u| + |\underline{v}| \le |u * v| \le |u| + |v|,$$

$$|u * v| = |u| + |v| \Leftrightarrow v = \underline{v}.$$

$$(1.6)$$

As a corollary from (0.2), (0.3) and (1.4) we obtain:

1.1. $*: R^2 \to R$ is a well defined mapping, i.e. R is a groupoid. \square Moreover, from (0.3) and (1.3) we obtain:

$$(\forall u, v \in R) \ u * (v * v) = u * (v \underline{v}) = u v \underline{v} = u \underline{v} = u * v.$$

Therefore:

1.2. $R \in \mathcal{U}_r$. \square

It is also clear that:

1.3. B is the least generating subset of R. \square

In completing the proof of Th.1 we will use the next two properties of \mathcal{U}_{τ} .

1.4. The following identities hold in U_r :

$$xy^n = xy$$
, $x^m x^n = x^{m+1}$, $(x^m)^n = x^{m+n-1}$, for any $n, m \in \mathbb{N}$.

Proof. Assuming $xy^n = xy$, we obtain:

$$xy^{n+1} = x \cdot y^n y = x \cdot y^n y^n = x(y^n)^2 = xy^n = xy$$
.

The other two identities are trivial corollaries of the first one.

1.5. If $G = (G, \cdot) \in \mathcal{U}_r$, and φ is a homomorphism from F into G, then:

$$(\forall u, v \in F) \varphi(uv) = \varphi(uv).$$

Proof. Let $u, v \in F$ be such that ex(v) = n, i.e. $v = (\underline{v})^n$. Then:

$$\varphi(uv) = \varphi(u) \varphi(v) = \varphi(u) \varphi\left((\underline{v})^n\right) = \varphi(u) \varphi\left((\underline{v})\right)^n = \varphi(u) \varphi(\underline{v}) = \varphi(u \underline{v}). \quad \Box$$

From 1.5 we obtain the following corollary:

1.6. Let $G = (G, \cdot) \in \mathcal{U}_r$, $\lambda: B \to G$ and φ be the homomorphism from F into G which extends λ . Then the restriction ψ of φ on R is a homomorphism from R into G, which extends λ . \square

Finally, Th. 1 is a corollary of 1.2, 1.3 and 1.6.

The following properties will be used in the next sections.

1.7. R is U_r -injective and (v, w) is the pair of divisors of $u \in R * R$ iff

$$|u| = |v| + |w|.$$

Proof. If $u \in R$, $k \in \mathbb{N}$, then we denote by u_*^k the k-th power of u in R, i.e.

$$u_*^1 = u , \qquad u_*^{k+1} = u_*^k * u .$$
 (1.7)

By (1.6), we have: $n \geq 2 \Rightarrow |u_*^n| > |u|$, and this implies that the condition 1) from Section **0** holds. If $u \in R*R$, then u = v*w = vw, where $v, w \in R$ and $\underline{w} = w$. Then u = v'*w' iff v' = v and $\underline{w}' = \underline{w} = w$. This implies that the condition 2) of Section **0** is satisfied, as well. \square

The following two properties are also clear.

1.8. If the operation • is defined in \mathbb{N} as follows:

$$(\forall m, n \in \mathbb{N}) \quad m \bullet n = m + 1, \tag{1.8}$$

then (\mathbb{N}, \bullet) is a \mathcal{U}_r -free grupoid with the basis $\{1\}$. The family of subgroupoids of (\mathbb{N}, \bullet) is infinite, and each of them is isomorphic to (\mathbb{N}, \bullet) . \square

1.9. If $G = (G, \cdot) \in \mathcal{U}_r$, and $a \in G$, then the subgroupoid $Q = \langle a \rangle$ of G generated by a is determined as follows:

$$Q = \{a^n \mid n \in \mathbb{N}\}, \quad a^m a^n = a^{m+1}.$$
 (1.9)

And, Q is U_r -free with basis $\{a\}$ iff:

$$(\forall m, n \in \mathbb{N}) \quad (a^m = a^n \Rightarrow m = n). \quad \Box$$
 (1.10)

(As usual we say that $\langle a \rangle$ is the *cyclic subgroupoid* of G, generated by a.)

2. U_r -injective groupoids

Below we assume that $H = (H, \cdot)$ is a \mathcal{U}_r -injective groupoid, and: $a, b, c, d \in H, m, n, k \in \mathbb{N}$.

Using the implication: $xy = x'y' \Rightarrow x = x'$, and the definition of the class of \mathcal{U}_r -injective groupoids, the statements that follow can be easily shown.

$$a^n = b^n \implies a = b. (2.1)$$

$$a^{m+1} = b^{m+n} \implies a = b^n$$
. (2.2)

$$a^m = a^n \quad \Rightarrow \quad m = n \,. \tag{2.3}$$

As a collorary of 1.9 and (2.3), we obtain:

- **2.1.** The subgroupoid $\langle a \rangle$ of H, generated by $a \in H$ is \mathcal{U}_r -free with the basis $\{a\}$. \square
 - **2.2.** For every $a \in H$ there is a unique pair (b, n), such that

$$a = b^n$$
 and $(b = c^m \Rightarrow m = 1)$.

(As in the groupoid F we say that b is the base and n the exponent of a, and use the following notations: $b = \underline{a}$, $n = \operatorname{ex}(a)$.)

Proof. Assume that there exists a pair (b,n), such that $a=b^n$ and $n\geq 2$. Then, the right divisor c of a is the base of a. From $b^{n-1}b=b^{n-1}c$ it follows that there exists $m\in \mathbb{N}$ such that $b=c^m$, and therefore $a=(c^m)^n=c^{m+n-1}$, which implies that $\operatorname{ex}(a)=m+n-1$. \square

The following two statements are clear.

$$(\underline{a}^n) = \underline{a}, \quad \exp(a^m) = m - 1 + \exp(a). \tag{2.4}$$

$$a^m = b^n \implies \underline{a} = \underline{b} \,. \tag{2.5}$$

As a corollary from 2.1 and (2.5) we obtain: •

2.3. A cyclic subgroupoid $\langle a \rangle$ of H is maximal iff $\underline{a} = a$; and, any two distinct maximal cyclic subgroupoids of H are disjoint. \square

2.4. If
$$\underline{a} = a$$
, $\underline{b} = b$, $a \neq b$, $n \in \mathbb{N}$ and $c = a^n b$, then $\underline{c} = c$.

Proof. Assume that $\underline{c} = d \neq c$. Then $c = d^{m+1}$, where $m+1 = \exp(c) \geq 2$, and therefore b = d, $a^n = d^m$; by (2.5), $a^n = d^m$ implies a = a = d = d = b, a contradiction. \square

2.5. If the subset $A \subseteq H$ is defined by

$$A = \{ a \mid a \in H \}, \tag{2.6}$$

then A is either singleton or infinite.

Proof. If A contains at least two distinct elements, then by **2.4**, A is infinite. \Box

2.6. Let ψ be the mapping from $(H \times \mathbb{N}) \times H$ into H defined by

$$\psi((a, n), b) = a^n b, \qquad (2.7)$$

and

$$D = (A \times \mathbb{N}) \times A \setminus \{((a, n), a) \mid a \in A, n \in \mathbb{N}\},$$
 (2.8)

where A is defined in (2.6). Then the restriction φ of ψ on D is injective and $im\varphi \subseteq A$.

Proof. The inclusion $im\varphi \subseteq A$ follows from **2.4**. If $a, b, c, d \in A$, $m, n \in \mathbb{N}$ are such that $a \neq b, c \neq d, a^n b = c^m d$, then b = d, and $a^n = c^m$, and therefore: a = c, m = n. (Note that if A is a singleton set, then $D = \emptyset$.) \square

The last result suggests the following construction.

Let A be a singleton or an infinite set, and let $M = A \times \mathbb{N}$, where the equality (a, 1) = a, for each $a \in A$ is assumed. Let $\varphi : ((a, n), b) \mapsto \varphi((a, n), b)$ be an injection from the set (2.8) into A. Define an operation \bullet on M as follows:

$$(a, m) \bullet (a, n) = (a, m+1),$$
 (2.9)

$$a \neq b \Rightarrow (a, m) \bullet (b, n) = \varphi((a, m), b).$$
 (2.10)

Denote by (A, φ) the groupoid $M = (M, \bullet)$.

The following characterization of U_r -injective groupoids can be easily shown.

2.7. (A, φ) is a \mathcal{U}_r -injective groupoid, such that

$$A = \{(a, n) \mid a \in A, \ n \in \mathbb{N}\},$$
 (2.6')

and $A \setminus im\varphi$ is the set of primes in (A, φ) .

Conversely, let H be a U_r -injective groupoid and A be defined by (2.6). Then H is isomorphic to (A, φ) , where φ is the restriction on D of the mapping ψ , defined by (2.7). \square

2.8. The class of U_r -free groupoids is a proper subclass of the class of U_r -injective groupoids.

Proof. By 1.7, the class of \mathcal{U}_r -free groupoids is a subclass of the class of \mathcal{U}_r -injective groupoids. Let A be an infinite set. Then there exist groupoids (A, φ) such that $im\varphi = A$, and thus the set of primes in (A, φ) is empty. Therefore (A, φ) is not \mathcal{U}_r -free. \square

2.9. A groupoid (A, φ) is \mathcal{U}_r -free iff the set of primes generates (A, φ) .

Proof. If (A, φ) is \mathcal{U}_r -free, then the set of primes generates (A, φ) by Th. 1. Assume that $B = A \setminus im\varphi$ (the set of primes in (A, φ)) generates (A, φ) . By **2.1**, if $B = \{b\}$ is a singleton set, (A, φ) is \mathcal{U}_r -free. It remains the case when B contains at least two distinct elements. Then, A is infinite.

Define a sequence of sets $\{B_k \mid k \ge 1\}$ as follows: $B = B_1$,

$$c \in B_{k+1} \Leftrightarrow c = \varphi((a, n), b),$$
 (2.11)

where:

$$a \neq b$$
, $n \in \mathbb{N}$, $a \in B_i$, $b \in B_j$, $i, j \leq k$, $k \in \{i, j\}$. (2.12)

The relations $B \cap im\varphi = \emptyset$, $im\varphi \subseteq A$, (2.11), (2.12), and the fact that φ is injective, imply:

$$B_{k+1} \cap (\cup \{B_i \mid 1 \le i \le k\}) = \emptyset,$$
 (2.13)

and $\bigcup \{B_k \mid k \geq 1\} = A$, where the union is disjoint.

Let $G \in \mathcal{U}_r$, and $\lambda: B \to G$. Define a set of mappings $\{\alpha_k: B_k \to G \mid k \geq 1\}$ as follows:

$$\alpha_1 = \lambda, \qquad \alpha_{k+1}(d) = \alpha_i(a)^n \alpha_j(b),$$
(2.14)

where $d = \varphi(((a, n), b)) \in D_{k+1}, a \in B_i, b \in B_j, n \in \mathbb{N}$.

There is a unique mapping $\alpha: A \to G$ such that, for each $k \in \mathbb{N}$, α_k is the restriction of α on B_k . Finally, the mapping $\overline{\lambda}: (A, \varphi) \to G$ defined by:

$$\overline{\lambda}\big((a,\,n)\big) = \alpha(a)^n$$

is a homomorphism which extends λ . \square

Now we can complete the proof of Th. 2.

Assume that H is a U_r -injective groupoid.

By 1.7, (i) \Rightarrow (ii). (Namely, if H is \mathcal{U}_r -free, then it is isomorphic

to the coresponding canonical U_r -groupoid.) Clearly, (ii) \Rightarrow (iii).

Assume that \boldsymbol{H} satisfies (iii), i.e. every divisor chain in \boldsymbol{H} is finite. From the \mathcal{U}_r -injectivity of \boldsymbol{H} , it follows that any element of \boldsymbol{H} has at most two distinct divisors, and this, by an application of König Lemma (for example [6; 381] or [7; 4]) implies that the set of divisor chains in \boldsymbol{H} with the same first member a is finite. Then the last members of such maximal divisor chains are primes in \boldsymbol{H} and a belongs to the subgroupoid generated by them. Therefore, the set \boldsymbol{B} of primes in \boldsymbol{H} generates \boldsymbol{H} . Thus (iii) \Rightarrow (iv). From 2.8 we also obtain that (iv) \Rightarrow (i). This completes the proof of Th.2. \square

3. Subgroupoids of U_r -free groupoids

The following statement is "a half" of the first part of Th. 3.

3.1. The class of U_r -injective groupoids is hereditary.

Proof. Let H be a \mathcal{U}_r -injective groupoid and Q a subgroupoid of H. We will show that Q is \mathcal{U}_r -injective. Clearly, the condition 1), in the definition of the class of \mathcal{U}_r -injective groupoids, is hereditary, and thus it remains to show that Q satisfies the condition 2).

Let $a \in QQ$. Then there exist $b', c' \in Q$ such that a = b'c'. If (b, c) is the pair of divisors of a in H, then b = b', and $c' = c^n$, for a (unique) $n \in \mathbb{N}$. Let k be the least positive integer such that $d = c^k \in Q$. Then $k \leq n$ and $c' = d^{n-k+1}$. This implies that Q satisfies the condition 2) as well. Namely, if $a \in QQ$, and (b, c) is the pair of divisors of a in H, then (b, c^k) is the pair of divisors of a in Q. \square

In 3.2 and 3.3 we assume that H is a \mathcal{U}_r -injective groupoid, and Q a subgroupoid of H.

- **3.2**. If $a \in Q$, and \underline{a}_{Q} is the base of a in Q, then there is a (unique) $k \in \mathbb{N}$ such that $\underline{a}_{Q} = (\underline{a})^{k}$, where \underline{a} is the base of a in H. \square
- **3.3.** If $a \in Q$ is such that $\underline{a}_{Q} = a = (\underline{a})^{k}$, where $k \geq 2$, then a is prime in Q.

Proof. Namely, the assumption that $a=(\underline{a})^k$ is not a prime in Q would imply that $(\underline{a})^{k-1} \in Q$. \square

3.4. If Q is a subgroupoid of a U_r -free groupoid H, then the set P of primes in Q generates Q.

Proof. By 1.7 H is \mathcal{U}_r -injective and there exists a mapping $a \mapsto |a|$ from H into \mathbb{N} such that: if $a \in HH$ and (b, c) is the pair of divisors of a in H, then |a| = |b| + |c|. By 3.1, Q is \mathcal{U}_r -injective, and if $a \in QQ$ and (b, c) is the pair of divisors of a in H, then there exists a (unique) $k \in \mathbb{N}$ such that (b, c^k) is the pair of divisors of a in Q.

Let m be the least positive integer such that $Q \cap \{a \mid a \in H, |a| = m\} = S$ is non-empty. Then $S \subseteq P$ and thus $P \neq \emptyset$. Denote by T the subgroupoid of Q generated by P, and assume that

$$a \in Q \& |a| \le n \Rightarrow a \in T$$
.

Let $a \in Q$ and |a| = n + 1. We will show that $a \in T$. Clearly, $a \in P \Rightarrow a \in T$, and thus we can assume that $a \in QQ$. Let (b,c) be the pair of divisors of a in H. By 1.7, we have |a| = |b| + |c| and thus $|b|, |c| \leq n$. By the proof of 3.1, there is a (unique) $k \in \mathbb{N}$ such that (b, c^k) is the pair of divisors of a in Q, and thus $b, c^k \in Q$, and $|b| \leq n$. If k = 1, then $c \in Q$ as well, and thus $a \in T$. Finally, if $k \geq 2$, then by 3.3, $c^k \in P$, and therefore $a = bc^k \in T$. \square

Now we can complete the proof of the first part of Th. 3.

3.5. The class of \mathcal{U}_r -free groupoids is hereditary.

Proof. Let Q be a subgroupoid of a U_r -free groupoid H. By 1.7, 3.1, 3.4 and Th.2, Q is U_r -free. \square

The second part of Th.3 follows from 1.8, and the third one is a corollary from the following proposition.

3.6. Let: $\mathbf{H} = (H, \cdot)$ be a \mathcal{U}_r -free groupoid, $a, b \in H$ be such that $\underline{a} = a \neq b = \underline{b}$ and $C = \{C_k \mid k \geq 1\}$ be defined by:

$$c_1 = ab, \quad c_{k+1} = c_k b.$$
 (3.2)

Then the subgroupoid Q generated by C is \mathcal{U}_r -free with infinite rank.

Proof. By 3.5, Q is U_r -free. By induction on m+n, one can show that: $c_m = c_n \Leftrightarrow m = n$, and thus C is infinite. Clearly $a \notin Q$, $b \notin Q$, and this implies that C coincides with the set of primes in Q. (Namely, (a, b) is the pair of divisors of c_1 in H, and $a \notin Q$, $b \notin Q$; this implies that c_1 is a prime in Q; assuming that c_k is a prime in Q, we obtain in the same way that c_{k+1} is also prime in Q. \square

References

- [1] R. H. Bruck: A Survey of Binary Systems, Berlin-Götingen-Heidelberg, 1956.
- [2] R. M. Cohn: Universal Algebra, Harper & Row, London, 1965.
- [3] \acute{G} Čupona, N. Celakoski: Free Groupoids with $(xy)^2=x^2y^2$, Maced. Acad. of Sc. and Arts, Contributions (in print).
- [4] G. Čupona, N. Celakoski: Free Groupoids with $x^n=x$, Proceed. of the First Congress of Math. and Informat. of Rep. of Maced., Ohrid, 1996.
- [5] O. G. Kharalampovich, M. V. Sapir: Algorithmic Problems in Varieties, International Journal of Algebra and Computation, Vol. 5 (1995), 379–602.
- [6] D. E. Knuth: *The Art of Computer Programming*, Vol. 1 (second edition), Addision-Wesley Publ., 1977.
- [7] J. A. Robinson: Logic Form and Function, North Holand Co, 1979.

СЛОБОДНИ ГРУПОИДИ СО $xy^2 = xy$

Ѓ. Чупона*, Н. Целакоски**

Резиме

Главните резултати во работава се Теоремите 1, 2 и 3. Во теоремата 1 се дава каноничен опис на слободните објекти во многуобразието \mathcal{U}_r од групоиди коишто го задоволуваат идентитетот $xy^2=xy$. Во Теоремата 2 е окарактеризирана класата \mathcal{U}_r -слободни групоиди во рамките на класата \mathcal{U}_r -инјективни групоиди. На крајот, во Теоремата 3 е покажано дека секоја од споменатите класи е наследна и дека секој \mathcal{U}_r -слободен групоид со ранг 2 содржи подгрупоиди со бесконечен ранг.

* MANU p. fah 428, 91 000 Skopje, Makedonija

** Mašinski fakultet, p. fah 464 91 000 Skopje, Makedonija