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VECTOR VALUED FIELDS

Kostadin Trencevski

Abstract. In this paper we intrcdduce (n,m)-fields and fully
commutative (n,m)-fields, as a continuation of the vector valued
groups and fully commutative vector valued groups. Further we
give some examples of the introduced structures.

1. Preliminaries

In this section we will recall the basic definitions and
results which will be used in the next two sections.

For a positive integer i, Gi denotes the i-th Cartesian

power of G. We will use the notation x=af

instead of x=(X_,...,3;)
i 1 1

f for the i-th

power of a_ , in order not to confuse (@ ,...,a,) with (a,,.oeeva ),
P

‘f
power. Let n, m and k be positive integers and let n=m+k. The

following notions are defined in [1].

for the elements of G~. Since we will use also a

only a7y, with the exponent "p" or constant integer will denote a

Definition 1.1. Amap [ ]: G" - G" is called an (n,m)-
operation, and the pair (G,[ ]) is called an (n,m)-groupoid. An

(n,m)-groupoid (G,[ 1) is called an (n,m)-semigroup if the operation

[ ] is associative, i.e. for each 1 < i < k and each x?+k€Gn+kp
i i+n,; n+k - ny n+k
[xy0xy L 1% one = D Ix (711, (1.1)
An (n,m)-semigroup (G,[ ]) is called an (n,m)-group if for each
aeGk and hecm, the eguations
[ax] = b = [ya]l {1.2)

have solutions x,y€G .

For example (see [2]), let (G,*) be an arbitrary group. Then
the pair (G*,[ ]) is (4,2)-group, where [xyzt] = (x*z,y*t). We
will use this in example 2 in section 3.

There are several definitions for the commutative analogs of
the above notions. We will use the following conventions. Let G(m}

1695



1696

18

be the m-th symmetric product of G, i.e. 6™ = @M/. where * is
the equivalence on G" defined by

X, = YT <==> xT is a permutation of yT.
The following notions are defined in [4] and [5].

Definition 1.2. Amap [ ]: 6™ ~ g™ 35 calleda fully

commutative (n,m)-operation on G, and the pair (G,[ ]) is called

fully commutative (n,m)-groupoid. A fully commutative (n,m)-

groupoid is called fully commutative (n,m)-semigroup if the

operation [ ] is associative, i.e. for each 1 < i < k, and each
x?+k€G(n+k), the identity (1.1) is satisfied. A fully commutative
(n,m)-semigroup (G,[ 1) is called fully commutative (n,m)=-group,
(k) and bEG(m), the equation

if for each a€G

[ax] = b (1.3)
(m)

has solution x€G W

Further we will use the initials "f.c." instead of "fully
commutative”. In [10] and [9] many examples of f.c. (n,m)-groups
are given. All of them are built on the field of complex numbers
(., or a subset of (. Here we give only one example which we will
need later.

In [9] it is proven that there is a bijection v between C(m]
and (™, defined by

u(z',...,zm} = ta1,...,aml

where a_ = I 2z,, a_, = L T2, 4 ems B E R s Doe
1 i 1“2
1<ism * 1<i<jsm * ) *m "

' Let us define a f.c. (n,m)-operation [ ] on (, as follows

(2] = W) <=>

I z, = I w,, L Z,2; = E WW, ,seeer L2, ...2 =
4<i<n i 1Sigm 12i<j<n 1) 1i<jsm 173 11 im
=w1w= . Wm.

Using the fact that ( is algebraically closed field, one can
verify that ((,[ 1) is a f.c. (n,m)-group. It is called additive
(n,m)-group, and is denoted by ((,[ 1,). We notice that in [9]
are studied more general classes of such f.c. groups called
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affine and projective (n,m)-groups, and also topological (n,m)-
groups.

Let (G,[ ]) be a given f.c. (n,m)=-semigroup, n-m = k = 1, and
let q be the least non-negative integer, such that m+q = 0 (mod k),
and let s be the least non-negative integer such that k(s-1)<m <ks
and mtq = ks [5]. The following definition is given in (5], [9].

Definition 1.3. Define a binary operation * on G(m) by:

axb = [ach] (1.4)

where cEG(q) for gq

> 1; and ¢ is empty symbol for q = 0, i.e.
a*b = [ab] for q = 0.

It is proved in [5], [9] that (G[m),*) is a semigroup. We say
that [G(m),*) is a derived semigroup for (G,[ ]). In case g = 1,
the operation * depends on ¢, but any two derived groups of a f.c.

(n,m)-group, are isomorphic [9]. Analogous definition of derived
semigroup and results hold in the ordinary case [2], [3], [8],
(61, i.e. not fully commutative case. Further in both cases, the
induced binary operation "«" in the derived groups will be denoted
by "e"..

(+) r)

= U G( .
(x) e
1f x€G'Y), then we say that the dimension of x is r, i.e. dim(x)=r.

We notice that the mapping [ 1: 6™ = 6™ induces a mapping
[ 1% G{+} - G(+), and we define a relation = on G{+]
[51, [7]):

Let (G,[ ]) be a f.c. (n,m)-semigroup and let G

as follows

v 1iff there is aeG(+) such that [au]’ = [av]’'.

It

u

Then u = v implies dim(u) = dim(v) (mod k), "=" is a congruence on
GI+} and the factor structure G(+J/i is a commutative semigroup.
The commutative semigroup G(+)/i is called universal commutative
semigroup for (G,[ ) and it %s!denoted by ¢V ((sp. 1f (Gi[}])
v clv

is a £.¢c. (n,m)-group, then G is commutative group, and

is called universal commutative group for (G,[ 1) ([51, [(7D).

In this paper we will introduce two classes of vector valued
fields. The first is f.c. (n,m)-fields and the second is (n,m)-
fields. The both definitions introduce new structures over a
given field, like vector spaces. Further we give an example of
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f.c. (m+k,m)-field on (, an example of (2m,m)-field and an example
of (2P*',2P)-field cn (. Here the following two unsolved problems
naturally arise:

1. Whether each f.c. (m+k,m)-field for m = 2, must be
constructed over an algebraically closed field?

2. whether there exist an (n,m)-field such that m J n?

2. Introducing (n,m)-fields

Before we introduce (n,m)-fields, first we will prove the
following proposition.

Proposition 2.1. The ordered triple (C[m),+,-), where the
operations "#" and "." are defined as follows

m m . m

(@} + ®) = [a] byl (2.1}
(@) o W) = Togy 84 oo Co oo Cpmlys i

(c..=a,*b.), (2.2)

1] 1 ]
satisfies the following conditions:
(i) (C(m],o) is an Abelian group,
(ii) (Cim),'} is an Abelian group, where
im) = {(Z,s00-72p) Iz? +...4 zg # 0 for each p€{l,...,ml}},
(iii) The operation "." is distributive with respect to the

operation "#".

Proof. Since (C,[ 1,) is a f.c. (2m,m)-group, the condition
(i) is satisfied. .

In order to prove (ii) and (iii), we will use the semigroup
ﬁ(+}. Since the f.c. (n,m)-group (C(m],[ ],) is induced by the
£.C. (m+l,m)—group'(c(m),[ 1,) (see [9]), we can temporary
suppose that k=1. In this case (k=1) we notice that in C(+) it
heolds

2y 2wl <=>1Iz; 2z, ...2zy =Iw,w, ...w for l<psm.
1 12 Ly Tz
P P
From 2, +...+ z2_ =w, +...+ w_ and L Z,Z. = L w.w., it
! E ) 2 1gi<jsr 13 1€i<j<m * 3



21

r s
2 _ 2 -
follows 11121 = ii1wi, and then from Ezizjzl = Ewiijl it follows
r s
£ z3 = & w; and so on. Moreover it holds
i=1 - i=1
- s r 5 -
2y 2wy <=> 1P =12 wE for 1 € p € m. (2.3)
i=1 i=1 *
Now we define mappings #,-: C{PxC*) = (™ .5 £o110ws
r s m
(@Hem$) = (P <=> I aP+ z bP= I ¢} for 1spsm (2.4)
i=1 i=1 i=1
and
r s m T p o
(aj) - (b]) = (o)) <=> I I (ajb,)¥ = T cf for lspsm (2.5)
1 S in 3 ER
i=1 j=1 i=1
i.e. '
s m .3 Z 2 D
(af) = (b3) = (P <=> (T aD)( I bY) = I cP for 1spsm. (2.6)
i=1 i=1 L =1

Using (2.3), (2.4) and (2.6) it is easy to verify that if

Ry S =~ gVv
a, = b, and ¢ = d1, then

(af)#+(c5) 2 (BD)+(a@y) ana (a5).(c5) = ). @".

Hence "4" and "-" are mappings #,.: C{VIxC(V} - C(m), where C{V]
was defined by C'*)/=. It is easy to verify that their restrictions
on C(m)xt(m) are given by (2.1) and (2.2).

Now let us return to the proofs of (ii) and (iii). Namely,
using the identities (2.4) and (2.6), it is easy to verify that
(iii) is satisfied and that the operation "." is commutative and
associative. Besides, if alj and b" are such that
m m - % m

¢ aP#0 and & bP#0, then (af)-(B})=(c)) where I cPf0 for 1<p<m,
i=1 i=1 i=1
and hence (Clm),-} is Abelian semigroup. The element e=(1,0,...,0}EC(mJ
is neutral element and the equation
m m
(@M (x) =e, i.e. (I af)( I xP) =1 for 1 < p <m
i=1 g=1
m

uniquely determines the sums E-xf for p€{l,...,m}, hence
i=1

{XT}EC(m) is uniquely determined, and (ii) is proved. ¢

From the proof of the proposition we notice that for each
pE€{l,....,m} the mapping hp: C(+) + [ defined by
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r
r, _ p
hp(z}) = & 2] (2.7)
induces homomorphisms hp: (C(m),f) - (C,+) and hp: (Cim}.-l - (C\{0},)

of groups and also

z, = wf - hp(zf] = hp(w?}.
The invertible elements of the operation "." are all zT such that
h (zf) # 0 for pe{l,...,m}. We also notice that (C(m],+) is the

derived group for the f.c. (2m,m)-group ((,[ 1.0 -

The previous proposition together with this discussion, leads
us to the following definition.

Definition 2.1. Let (F,+,-) be a field, and [ 1: F'® - p(@

and *: F(m)xF(m} - F(m) be given maps. The ordered triple (F,[ ],*)
is called f.c. (n,m)-field, if the following axioms are satisfied:
(i) (F,[ 1) is a f.c. (n,m)-group;

(ii) The ordered triple (Flm),+,*l is a commutative ring with
unit (note that (F(m},t) is the derived group of the f.c. (n,m)=-
group (F,[ 1))

(m) . p (i€{1,...,m}) such

(iii) There exist m mappings hi: F
that

h,(a*b) = h;(a) + h (b) and h,(asb) = hy(a)-h,(b),

i.e. h (F(m],+,*} - (F,+,-) is a homomorphism of rings;

i:
(iv) If hpta} # 0 for each pe{l,...,m}, then a€F
invertible element.

(m) is an

It is easy to verify from (ii), (iii) and (iv) that the set

ri™ = (aer™ | h,(a) # 0 for pe(l,...,m})

is an Abelian group with respect to the operation x. We will call
the mappings hi projections. It is easy to verify that the f.c.
(m+k,m)-field induces a f.c. (mtkt,m)-field. Finally we notice
that each field (F,+,-) is a f.c. (2,1)-field. It is sufficient
to put [ab] = a+b, a*b = a.b and h1(a) = a.

Analogously to the definition 1, we will define now (ordinary)
(n,m)-field.
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Definition 2.2. Let (F,+,-) be a field, [ ]: F* = F™ and
x: FPF™ - F", The ordered triple (F,[ J,*) is called (n,m)-field,
if the following axioms are satisfied:

(i) (F,[ 1) is an (n,m)~-group;

{ii) The ordered triple (F",+,#) is a commutative ring with
unit (note that (F",+) is the derived group of the (n,m)-group
(Pr[ ]}Ji

(iii) There exist m mappings hi: '« F (i€{1,...,m}) such
that
hi(a+b) = h;(a) + h;(b) and h,(axb) = hi{a)-hi(bl,
i.e. hi: (Fm,+,n} -~ (F,+,+) is a homomorphism of rings;

(iv) If h;(a) # 0 for each p€ll,...,m}, then a€" is an
invertible element.

For (n,m)-field the discussion which followed after the
definition 2.1 also holds.

3. Examples

Example 1. Let F = (, and let ((,[ ],) be the additive f.c.
(m+k,m) -group. Since this f.c. group is induced by the f.c.
(m+1,m)-group, we obtain that the derived group is C(m) with the
operation "4" defined by (2.1). We define an operation = in C‘m’
by (2.2), and projections hp: C(m) - (C by

m
my _ P
hp(a1} ii1ai (1 <p Sm). {3.1)
Then ((,[ ]+,*) is a f.ec. (m+k,m)-field. The proof is analogous
to the proof of proposition 2.1. Indeed that proposition asserts
that ((,I[ 1,,*) is a f.c. (2m,m)-field for k = m.

Example 2. Now we give an example of (2m,m)-field. Let
(F,+,-) be an arbitrary field, and let (F,[ ]) be the (2m,m)-
group defined by

(671 = (a,+b,,...,a +b ). (3.2)
Then the derived group is F" with the following operation

(ai;...,am) * (b,,..,b) = (a,+b,,...,a; +b ). (3.3)
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In F™ we define operation * by
(a1,;..,am)*{b,,---,bm} = (a‘.b‘.....am-bm}, (3.4)
and projections
hp(ﬂ.l,.oo’am) = ﬂp for pﬁ{l,.-.,m}.
Now it is easy to verify that (F,[ 1,«) is (2m,m)-field.

Now we will find a connection between the f.c. (2m,m)-field
from the example 1 (or the proposition 2.1.) and the (2m,m)-field
from the example 2 for F = (. Namely we will show that there is
an isomorphism ¢ between their derived groups, their multiplicative
groups with the operation *, and it preserves the projections.

Let us define mapping ¢: (™ - (™ by

my, _
¢(z,) - ‘31:--o!am):

m

where ap = I z? for 1 < p £ m. Then ¢ is a bijection. Further let
i=1 m

¢(wy) = (b ,...,b ) such that b, = = wE for 1 < p < m. The

i=1
m-tuples (a,,...,a ) and (b ,...,b) in (™ are added and multiplied

according to (3.3) and (3.4). Let u™,v™e(™ are such that

u? + ... +u = ap + bP p€{l,...,m} and

vP o Lol o+ vg = ap-bp pE{1,...,m}.
Then according to (2.4) and (2.6) we obtain
zT + wT - uT and zT * wT = VT,

and hence
m _: my _ -
¢(z1va) = ¢(u)) = (a,tb ... a +h ) =
= (a,,---0a) # (by,e.u,bp) = 0(2]) + oW},
and
m, m _ _ =
$(2Tww) = o(V}) = (a b ,...,a b)) =
= (@,seeerag) - (bopeearby) = ¢(27) -4 (W) .
Hence ¢ is an isomorphism between their derived groups and their
multiplicative groups with the operation *. Moreover, ¢ preserves

the projections, because

r g

P m :
z3 = hp[z1), i.e. h_os=h_.

m - — =
hp(¢[z,)} = hp((a,....,am]} =a_ = i 5

L2 i=1
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Example 3. We define (4,2)-group on C by

[2,22232,] = (2,%2,,2,+2,) Z4123125:2,€(C-

Then the derived group is (* with the operation
(z4,2;) * (25,2,) = (2,%2,,2,%2,),

and we define a multiplicative operation "#" in (? by

(2,,2,)%(2,4,2,) = (2,2,-222,+2,2,%2,25).
Obviously the multiplicatively operation is associative with unit
(1,0) and that the distributive law for multiplication with
respect to the addition is satisfied. Further we define mappings
h,,h,: (* - C by h,(z,,z,) = z,+iz, and h (z,,2,) = 2,-iz,. Now
one can verify that the axiom (iii) from the definition 2.2 is
satisfied. Further

F2 = ((z,,2,) | h,(z,,2,) # 0 or h (z,,2,) # 0} =
= {(a+ib,c+id) | a=-d, b=c} U{(a+ib,c+id) | a=d, b=-c}.
One can verify that (z ,z,)€(® is an invertible element iff
(z,,z,) £F;. Indeed,
(z,,2,)%(w ,w,) = (1,0)
(a+ib,c+id) .a’+ib’,c’+id’) = (1,0)
yields to a system of linear equations of a’,b’,c’ and 4’ whose
main determinant is

-b -c daf.

a
b a =4 €| _ [ (a+d) 2+ (b-c) 21[ (a-d) 2+ (b+c) 2].

c =d a -b

d c b a
Thus the element (21,23]EC’ is an invertible iff (21.22)EF3 and
hence ((,[ 1,%) is (4,2)-field.

The pair (a+ib,c+id)€(® can be written as (a+ib)+j(c+id).

Then the multiplication in (? satisfies the identities i*=j2=-1
and i-j=j-i. The homomorphisms h,6 and h, indeed change j by i and

-i respectively.
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The above example can be generalized for (2P*",2P)-field on
(. For example for p=2 the operation [ ] is defined analogously
to (3.2) for m=4. The derived group consists of

(z,+32z,) + k(z,+32,) . 2,+2,,2,,2,€(.
The multiplication is induced by the following identities
i? = 42 = k? = -1 and ij = ji, ik = ki, jk = kj.

The homomorphisms h, ,h, ,h, and h, are uniquely determined by the
following identities:

h, (3) = i, h (k) = 1,
h,(j) = 1, h, (k) = -1,
h,(j) = -1, h_(k) = i,
h, (3) = =i, h (k) = -i
and hi(zJ =z if z€(.
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BEKTOPCKO BPEIHOCHH MNOJIHBA

KoctanHH TpeHYeBCKH
Pe3aHrMe

Bo 0BOj TpYOd Ce BOBENEeHH MOHMHTe 3a (n,m)-noJjie H noTnojHO
KOMyTaTHBEHO (n,m)-rnoje, Kako NpONOJIKeHHE Ha TeopHJjaTa Ha BEeKTOPCKO
BPEOHOCHH TDPYNMH H TOTNONHO KOMYTATHBHH BEKTOPCKO BDENHOCHH TDYIH.
lloToa ce ganeHd HEeKOJIKYy NpUMepH Ol BOBEINEeHHTEe [OWMH.
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