10.3. Projective com(mtk,m)-semigroups and groups

The complex com(m+k, m)-groupoids (c,.f) can be examined via

polynomial mappings

such that
f[zT+k

]=H1

If the coefficients of the polynomial ¢(p) (except the coefficient 1 in
front of t") are linear functions of the coefficients of the polynomial

o ¢(ft—zl)...(t-zm+k]] = (t-w ). .. (t-w ).

p with degree m+k, then the complex com(m+k,m)-groupoid determined in
this way was called affine in 011.2. The affine com(n,m)-group structures
can be generalized in the following way. We can consider the polynomial

mappings
] ] .
¢ 2P EP

instead of the polynomial mappings ¢;Pm+kapm where for a positive
integer n,
n-1

- n n
PLo={agt -at # ...+ (-1)a | (3,2

where CPn is the n-dimensional complex projective space.

Further, if pEP; and deg(p)=r<n, then we say that o is a root of
the polynomial g with multiplicity n-r. The converse alsoc holds.
Indeed, if the numbers TR :
be given, then there exists a unique polynomial pePn such that 242

n
yrooea, )ECP b

,znec. = Cu{w} which may not be different,

n
are roots of p. Thus a polynomial mapping ¢ :P;+k->Pm corresponds to

each com(m+k,m)-groupoid on C.. and conversely, a com(m+k,m)- groupoid
corresonds to each such mapping.

In general we can write

* m+k m+k-1 _ Mtk
¢ {aot - alt + ... +(-1) 2 ek
m m-1 m-2 m
= th - Flt . th - ... +(=1) Fm (3.1

)

where F, ,0=i=m, are functions of a_.,a.,...,a 4
i 1 m+k
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Definition 3.1. If F1 (i=0,1,...,m) are linear functions

of_ ao.ai...., —— i.e.

P laicse, o8 o) m SR gom (0=i=m) (3.2)
1% %1 E 0=j=m+k 1 J.
then the corresponding com(m+k,m)-groupoid on € which is Induced by the

polynomial mapping (3.1) is called a projective com(m+k,m)-groupoid. If
this groupoid is associative, then it is called a projective
com(m+k, m)-semigroup. A com(m+k,m)-group on a non-empty subset of c’
which is obtained by removing the singular elements from a projective

com(n+k, m)-group is called a projective com(m+k,m)-group.

Let a com(m+k,m)-groupoid (semigroup, group) (G,f) be given, and let
an arbitrary bljection ¢ G 3 G be given. Then ® 1induces a
com(m+k, m)-groupoid (semigroup, group) (G,f') as follows:
. po K m
£ {21 szl =

£(o7 M (z))ee 0 g =0T ) e ).

1
These two groupoids (semigroups, groups) (G,f) and (G,f') are isomorphic.
If G=€° and (c',f) is a projective com(m+k,m)-groupoid, then (c”,£)
may not be a projective com(m+k,m)-groupoid. In order to study the
projective sSemigroups and groups, the following theorem has an important

role.

Theorem 3.1. Let ¢ :¢° 5 ¢ bean arbitrary bilinear transformation
e(z)=(az+b})/(cz+d) (ad-bc#0), and let (C..f] be a projective
com(m+k, m)-groupoid. Then the induced com(m+k,m)-groupoid by ¢ Iis

projective.

Proof. Suppose that the projective com(m+k,m)-groupoid is given by

the linear functions
Pl B ooyt 0 = Z a a
et O W T e 104
and that the induced com(m+k,m)-groupoid is determined by the functions

(O=i=m)

F‘(a ,...,3_ . ). We will prove that they are linear functions. Since each

m+k
bilinear transformation can be represented as a composition of the
following transformations 1. plz)=1/z, 2. ¢(z)=z/A (A#0, A#w) and 3.

p(z)=z-A (A#w), it is sufficlent to prove the theorem in each of these

special cases. Assume that z,,...,Z_,., ul....,wmec' are such that
m+k m
i‘(z1 )=u1.
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1. Let ¢(z)=1/z. We will verify that 1its inverse transformation
¢ liz) = 1/z induces the following mapping:

n +k n*k

alaU 11 ) 3 (am+k'an+k-1"' aolecP (3.3)
First let us suppose that z;#» and z,#0 for each 1€{0,1,...,m+k}. Then
aU¢O, n‘kao and an = 34( n+k ), for (ie{l,...,m+k-1}). Hence we
obtain
i =1
(#) = ¢ (67 (z)) b N e L)
T gl (z;“”‘}/y"*" (z’{'”‘)
s [am+k—1/ao)/(am+k/a0} 5 {an+k-i/am+k)’
and thus, in CP™'K.
SRR okt -
B P e A o o)
Herewith we have proved that
[ao,al,...,am+k) 3 [am+k.am+k_1....,a0)
if z,#0,0 for each ie{0,...,m+k}. Now let us suppose that among the
numbers ZyvenZp there exist exactly r numbers which are equal to =,
and the others are not equal to zero. Without loss of generality we can

assume that z =z =, .=

k- Zmek-1 w. Then a =a =...=a_ _ =0, arso and

Znikelor (o i N 5 |

a2, = yi[z?+k-r] (ie{1,2,...,m+k-r }).

T+i

Hence we obtain

B B e, B I e L
=y"’*“""”(z‘;‘*"‘"‘;xsﬂ“”‘"" 5T = (e, /2 )/(a,, /3 )
=B k-1"2psx  for ie{l,....m¢k-r}  and
#'=0  for te{m+k-r+1,...,mek }.

Thus, in cp™¥
(1, & Loy s w00, 0

and in this case we also have

(ao. oo e, ) 2 (am+ o aU)
Analogously one can verify this statement in the special case when some
of the numbers 21""‘zm+k are zeros. For the sake of simplicity we
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skip those special cases like zi=l]. zl=w. uluo or H1=m for some i.

Further we obtain

3 ===l m
Eltaﬂ""’ali_k_Lyl[Hm]:ym o)) Fyjlagyee-- 8

FB(‘O""'amk) 2 S'm(p_i(wl;]] f:lu(am-!k'""&0"'

for 1e{1,...,m}. The equality implies that
Filag,...,a ) =F @ 1--08g) =
= prEany IO S S T P el I A
0= j=mk (m-1)J “m+k-] 0= Jm+k (m-1i) (m+k=-J) " j

for 1e€{0,1,...,m}. Thus A (ie{0,1,...,m}) are linear functions of
Bo’nl""'amﬂc' Moreover we notice that

a’ 1) = “’[m-l}(mk—,j) (3.4)
for 1€{0,1,...,m} and Je{0,1,...,m+k}.

2. Let plz)=z/A (A20, A#w). It is easy to verify that in an
analogous way as the one in the previous case, the inverse transformation

¢-1lz)=.?\z induces the following mapping:

m+k 2 m+k m+k
cP a(ao,al. vare .am*k] B [aO.J\ai,J\ CITRRE > | amk]ecl’ 5
Thus we obtain
o mtk m+k
F"Lb——( : =9l(wm)=1—5’1 (v-l (U.H-L Fltan'hat' SR au‘+ )
F.{amk] 1 ;\i 1 A! F( ey k”ka )
00 S i (i m+k
for ie{l,...,m}. Hence we obtain
m+k
4 ey m+k 4= J
Fi(aﬂ'al' o .am+k)—a Fi(ao.aal. ey am+k) > W mUh a.J
J=0
for 1e{0,1,...,m}. Thus Fi are linear functions of Bgs e By and
moreover
’ . J-i
ai,j = A ai‘j (3.5)
for 1e{0,1,...,m} and Jje{0,1,...,m+k}.

3. Let plz)=z-A (A#w). Analogously to (3.3), the inverse
transformation p—]'(z)szﬂ induces the following mapping:

m+k m+k
cP a(ao.al....,amk) > (ho,bl,...,bn*kJeI:P
= r r+m+k-i
where b, = T A (" “la,  for i€{0,1,....mtk}.

O=r=i
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Using this fact, further we obtain

) 3 GRS

)
> S o} mtk i om,_ r r+m-i yl-r -1 mys
: = (W)= Z (=) ( ) (¢ (W)=
Folage -y m+k] S r 1

s ki T
& IO s b £ %
Osrsi {2 ! b SRS -
i
STy scw ok 2 8w b
O=r=i T Oospsm+k (1-r)P'P " g<p<mek OP P

for 1e{1,...,m}. Hence we get

P ( . )= £ E@TETY T
S i ) S r 08
i m+k P m+k

5y rm=1 s, s+m+k-p _ *
ALy Y s a{l_r}pszgh e }ap_S JzoaiJaJ

for 1€{0,1,...,m}, where

b =
-r)p P

O 0 T e il (o B N La /gl
1§ gepay r Jspsmek (i-r)p p-J

Putting p=s+j, we obtain

¥ oo _ayPeren=i
aiJ—O > F . Ol R g

el (3.6)
srsi O=ssm+k-j

nL(i—r)(s*.j)a

where 1€{0,1,...,m} and je{o.l....,m+k}. This finishes the proof of
the theorem.®

Now we will introduce a characteristic polynomial for a given
projective  com(mt+k,m)-groupoid on ¢’. Let (€°,f) be an arbitrary
projective  com(m+k,m)-groupoid, and let f(z?x:]-y?. The axiom for

solvability reduces to the following. Suppose that yl.....ymec. are the
roots of the following polynomial
m m-1 m-2 =
F b = FtT - £ Et oo H-1DPF, =0
where (Fy,...,F )€CP", and that zl,...,zkel:‘ are the roots of the
following polynomial
k k-1 k-2 k
GOt - Glt +Gzt i #=1) Gk 0

where (Go,...,Gk)ECPk. The aim is to find numbers xl....,x-ec. as the

roots of a polynomial
m m-1 m-2 v
e P e N il SR +(-1)"H_ =0

where lHn,..‘.Hn]eCPm. Then the equation f(z?x?)=y? can be written in
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the following form:

z z acHG. o= F {3570
0stsn O=r=min(t,m) i%ex Lo A

for each i€{0,1,...,m} and where Gt—r=° for t-r>k. We notice that (3.7)
is analogous to (2.28) for the affine com(m+k,m)- groupoids. The
equality (3.7) should be conceived as an equality in ¢P™ but not in
c“*l. Thus the axiom of solvability reduces to the requirenent that the

system (3.7) has the unique solution (HO.HI,....HNJECPm. The main
determinant of the linear system (3.7) is
k k k
e Za G T« G
sup DL 1 T OEI#1) jop O(1+m)
k k k
z e« .G T a G o AR G
A'(z‘l‘l= gy AL Syl AN S (3.8)
k k k
$a_C Ta Go | i TR G
{=0 mi 1 i=0 m(i+1) 1 =0 m(i+m) 1
or shortly,
-
Az gy =detl ¥ & G.) {3.8")
1 k oStk jli+s) i
where J;se{o.l.....m}. The polynomial (3.8) is called the characteristic

polynomial for the considered projective com(m+k,m)-groupoid (semigroup,
group). Thus the axiom of solvability is satisfled iff the polynomial
A.[zl.....zk) never becomes zero. The degree of this polynomial with
respect to each argument is =m+l, while the degree of the characteristic
polynomial in the affine case was =m. Specially if - k=1, the
characteristic polynomial can be written in the following form:

fegpiehe ™ g™l

2 %00 %or - “o2 “0(m+1)

A (z)= @0 @y %5 % (me1) (3.9)
%m0 a1 “mz %n(m+1)

Now we will reveal the connection between the affine and projective
group structures. It is given by the following Theorem.

Theorem 3.2. Each affine com(m+k,m)-groupoid can be treated as a
com(m+k, m)-subgroupoid of a projective com(m+k,m)-groupoid (c*.£") where
weC® is a singular element. Conversely, let (C€',f ) be an arbitrary

N
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projective com(m+k, m)-groupoid such that there exists ﬁec. and
(c'\{z }.f.} is a projective com(m+k,m)-subgroupoid from (¢*,£"). Then
the subgroupoid (C"\{€}.f') 1s 1isomorphic to an  affine
com(m+k, m)-groupoid. Besides that, each projective com(m+k,m)-group is
isomorphic to an affine com(m+k,m)-group.

Proof. Let us suppose that the affine com(m+k,m)- groupoid (C,f)
is given by the following functions:

ol conaz )= g % I P (ie{1,...,m}).
1="1 m+k 10 Sl irTr
If we put aoosl and am=0 for ie{l. irialls .m+k} we obtain a projective

com(m+k, m)-groupoid (C'.f.} which is given by the following functions:

.

Fola s, .. i o) = 3 o= (ie{0,...,m}).

0" ki 194

Now (c,f) is a com(m+k,m)-subgroupoid of (B‘.f.] because
L -
Fill.al, s 'an-rk]-Fl(a.l' i .am+k} and FO“'al' s ;a‘m':k)_i' Further we
shall prove that «eC is a singular element for (C ,f ) 1i.e. ®,

.y @
is not a bijection. Let fltu.,__,u,zT)guT, In that ek
ﬂ0=il1=- .o =B-k_1=0 and so F;=a0-0. Hence at least one of the elements

WypoouoW is w and ¢ is not a bijection. Thus weC' is a
1 m ©,,,,,0

singular element for (c°,f), and the first part of the theorem is
proven. Before we prove the remaining part of the theorem, it is
convenient to consider the following:

Remark. We notice that according to the definitions of a
characteristic polynomial for affine com(m+k,m)-groupoids and projective
com(m+k, m)-groupoids, the characteristic polynomials for (C ,f ) and
(C,f) are the same. The characteristic polynomial le;) for (C,f)
has degree =m with respect to each argument, but the characteristic
polynomial A'(zl;) for {C-,i‘.] has degree =m+1 with respect to each
argument. The above statement gives us the right to consider ﬂ‘(zl;) as a
polynomial in P;i-i’ for each argument. Indeed, 1f a polynomial of degree
=m is considered as an element of P:ul’ then o 1is a root of it. On the
other hand we saw that » is a singular element of (€ ,f ).

Now let us return to the proof of the theorem. Let (C.,f-) be a
projective com(m+k,m)-groupoid and let Eec' be such that (c'\{e}. £') is
subgroupoid of (c',r'). We choose an arbitrary bilinear transformation
¥, such that ¥(£)=w. According to Theorem 3.1 the com(m+k,m)-groupoid
(C,f) which is induced by the transformation ¥ is projective, and it is
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isomorphic to (€"\{€},£*). We will prove that (C,f) 1is an affine
com(m+k,m)-groupoid. Indeed, as it 1is a com{m+k, m)-groupoid on C, we

can suppose that aoll and Fbll. Since

G B i 1 R SO - e e e { L b
0 1 00 1sism+k 0i i

it follows that «,,=1 and «, =0 for ie{1,....m+k }, which means that
(C,f) 1is an affine com(m+k,m)-groupoid.

Now let a projective com{m+k,m)-group be given. In fact it 1is
obtained from a non-singular projective com(m+k,m)- semigroup by removing
the singular elements. We will prove that the set of singular elements

R is not empty. We know that
R = {ze€'| A°(2,...,2) = O}

and A"(z,...,z) 1is a polynomial of degree k(m+1). Thus A (z,...,2)=0
has at least one root. Specially, if A.{z....,z]=const. then z=o Iis the
unique root of it. Hence Re22., Let geR. We choose a bilinear
transformation ¥ such that ¥(8)=w=. This bilinear transformation induces
a projective com(m+k,m)-group on c'\wtx):c which is isomorphic to the
given projective com{m+k,m)-group. So for the 1induced proJjective
com(m+k, m)-group we can put a =1 and F_=1. Hence we obtain that o =1

0 0 00

and 0 for ie{l,...,m+k}. and the induced projective

R01=
com(m+k, m)-group is affine.m

The following theorem gives us the necessary and sufficient
-

condition for a projective com(m+k,m)-groupoid on C to be a

com(m+k, m)-semigroup.

Theorem 3.3. A projective com(m+k,m)-groupoid on ¢’ which is given

by the elements @ (1€{0,1,...,m}, Je{0,1,...,m+k}) is associative
b
JS-JO =0, (3.10)
for each s=1,2, ..., k, where
%is-1) %s  %o(s+1) 0 “o(s+m)
= 2 Btact)- s Pyt =0 %(sm)
5 %s-1) %os  %2(s+l) vt %2(s*m)
is-1) %“ms  %m(s+1) " “m(s+m)
79

1602



%01 %02 et “*0(m+k)
Pl e L] f01™%12 " %o(mrk-1)""1(mek)
2 %107%;1 %117%> “0 % (mek=1)"%2(m+k)
“m0 % (m+1)1  “m1 %(m+1)2 7 Fmlmik-1) %(m+1) (mik)
or shortly,
_15§sm“1(s+31(“3(r-1}'“(J+1)r}‘° (3.10")
where 1€{0,1,...,m}, re{l,...,mtk}, se{l,...,k} and a(-l}J=0 for
Jed0,1,... ,m+k-1}.

Proof. According to Proposition 01.3.1 we will prove that the
transformations pp and pq comaute for each p,qe(c.)[m] iff (3.10)
holds. We know that the transformation vp is given by (3.7). Moreover,
it is easy to see that it can be written in the following form:

AOGO +AG v ..+ Aka (3.11)
where (GO,GI,....Gk)ECPk is such a k-typle that p=(p1,...,pk} and
Pyr-::1Pp are the roots of the polynomial equation

K k-1 e
Gt~ - G,t *+ ... #(-1)G =0,
and
%01 %(1+1) " %(i+m)
o o % i 4
el T e 1 (3.12)
mi “m(1+1) *** “m(i+m)
for 1i€{0,1,...,k}. A A
Two transformations ¢, and @ commute iff the matrices: §p=
z Alci and ¢ = % Alci commute. This is satisfied for arbitrary
O=isk Osis=k 2
numbers G, and G (i€{0,1,...,k}) iff
Ai-AJ = aJ-Ai (3.13)
for arbitrary 1.J.e{0,1.....k}. On the other hand the condition (3.9)
can easlily be written in the following form:
As+1'A = AS-A (3.14)
for se{0,1,...,k-1}, where
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%50 g o %0 (m+k-1)
s il “11 0 ®(mek-1)
- h“no “m1 e um(m+k—1)J
and
%01 %02 2 %0 (m+k)
0 1 % e %1 (m+k)
AR R e ?
| “m1 “m2 L “m(m+k) J

Further, the equality (3.14) can be written in the following form:

As*l-Ai = AS-AI‘I (3.15)

for 1,s€{0,1,...,k-1}. Thus we only have to prove that the conditions
(3.13) and (3.15) are equivalent.

It is easy to see that (3.13) is a consequence of (3.15), because
applying the formula (3.15) |j-i| times we obtain (3.13). In order to

. prove the converse we must use the fact that the matrices A, are given

i
by (3.12) and hence they are not mutually independent. We put hi=[xl

Xy 1 Xien] (1€40,1,...,k}) vhere xj  (Je{o.1,....m+k})  is the
following vector column
Ko =N e S }T.
J 0J 1j mj
The formulas (3.13) can now be written in the following form:
Ai'x3+r & Aj.xi+r
i,Je{0,1,....k}, re{0,1,...,m}, or
Ai'xp = AJ-xq
where 1i,Jje{0,1,...,k}, p,qe{0,1,...,m+k} and i+p=j+q. Hence we obtain

Agei ¥y =8 %y
for se{0,1,...,k-1}, 1€{0,1,...,m*k-1}. This implies the equality (3.14)

i.e. (3.15) and the proof of the theorem is finished. =

Similarly to Propositions 1.1 and 1.5, about the affine
com(n,m)-semigroups, one can prove the following two propositions:

Proposition 3.4. If (c',f} is a projectivg com(m+1,m)- semigroup,
then the induced com(m+k,m)-semigroup is als&ﬁprbjbctive. =
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Proposition 3.5. Let (c",f) be a com{m+1, m)-semigroup, such that
for each pEC'. Ep is a linear transformation on CP". Then (C.,f] is

a projective com(m+#1,m)-semigroup. =

We notice that if we put = .= in the theorem 3.3,

%017%2™" * - %0 (m+k) =0
we obtain as a consequence the assoclativity law of the affine
com(m+k, m)-groupoids. It can be verified that the condition of
associativity (3.10) is invariant under the matrix transformations
(3.4), (3.5) and (3.6), Now we will consider some examples of projective

groups,

Example 3.1. Let us consider the projective com(3.2)~ groupeid which
is given by the following matrix:

A= =5 0 1 0f.
-2 0 0 1
It can be verified by Theorem 3.3 that the associative law is satisfied,
and thus it determines a projective com(3,2)- semigroup. Its

characteristic polynomial is

-23 22 -2 1

P T i 3 SR e B
=5 0 1 0
-2 0 0 1

Thus, the only singular points are 1 and 2, and by removing them we
obtain a projective com(3,2)-group on c'\{i.z}. The singularity of the
points 1 and 2 can directly be verified as follows. Let us consider the
system

f(z‘.zz.z] = [”1'"2)
where z,wl.naec. By the change of variables 2z +22=ﬁ and 2,z =B

1 172
this system is equivalent to the system

1

{ (B+Az-5)/(A+z-4)=a (a=u +u,)
(Bz-2)/(A+z-4)=8 (ﬂ=w1w2}

(3.18)

i.e. to the system

{:;z—a) +B=o0z - 4o + 5 (3.17)
- Bz =48 - 28 - 2

Since the system (3.17) should have a unique solution for A and B, it
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should be
z-o 1 2
= -z +za-B*0.

B -z
Let us suppose that 2z, « and 8 are chosen such that zz—zm-B-O. Then,
B=z(a-z) and by replacing it in (3.14) one obtains the following system:

{:;z—a} +B=walz-4) + 5

(z-a) + Bz = (z-4)z(a-z)+2.

This system has infinitely many solutions iff 23—422+Sz-2=0. 1.e. Z, 5
L]

=1 and zy = 2. Thus the points 1 and 2 are exactly the singular

points. If 2z#1 and 2z#2 and B=z(a-z), then the system (3.17) does not

have solutions in C, but on the other hand the system (3.16) has the

unique solution (A,B) in II:l'-"2 which is given by A 2 ®», B » = and

B/A=a-p. Thus there exists a unique pair (zl.zzle(cm)(2J such that
zl+22=h and 2122=B' namely z,=o and 22=a-z, or 21=u-z and zz=n'e.
Similarly one can discuss the case when some of the elements z, "1
and W, are o Further we choose the following bilinear transformation
W(z)=1/(2z-1), such that ¢(1)=e=, and ¢@(2)=1. One can verify that this

transformation induces an affine com(3,2)-group on €\{1}, and which is
given by the following matrix:

1 0 0 0
A = 0 1 0 0].
0 0 1 =1

In fact this is the affine com(3,2)-group from Example 101.5.4, Its

characteristic polynomial is

3 2

- -

A'[z]= =z-1

O = O N

L =1
and hence the singular points are Zy ;= and zs=1.

Example 3.2. Now we will consider a class of projective
com(m+k, m)-groups, whose construction appears very naturally.

Let us denote by PGL(m;C) the set of all non-singular linear
transformations on €P". In fact, PGL(m; C)=CL(m+1;C) /# where = is the
equivalence relation on GL(m+1;C) defined by

AxB & (3reC\{0}) A =2B.
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The group PGL(m;C) is a complex Lie group and its complex dimension is
(m-l)z-i-n(n-vz).

Now let us suppose that A is an arbitrary (m+1)x(m+1) complex
matrix, and let

S(A) = S = {AeC"| A*AI€PGL(m;€) is a non-singular matrix},

i.e. Sal:'\{i\l. 55k '?'t }  where 2\1, o .P\t are the eigenvalues of the

matrix A. Specially «eS because A+w]l = I is a non-singular matrix.
Suppose that the minimal polynomial for A is

Nl-*atr* T -
r 0

It means that the matrices I,h.....i\r are linearly independent, and

r+1 r+2

P(t) = ¢

each of the matrices A A

combination of I, A, ..., A". This leads to a polynomial mapping from

can be represented as a linear

the set of all polynomials to the set of polynomials of degree =r.
Besides that, each of the polynomials of degree =r is a fixed point for
that mapping. This mapping determines a com(r+k,r)-semigroup on ¢’ and
com(r+k,r)-group on S. This com(r+k,r)-semigroup (group) is induced by
com(r+1,r)-semigroup (group). Thus it is sufficient to study only such
com(r+1,r)-semigroups (groups).

In the case of com(r+1,r)-semigroup (group), the polynomial

r+l r
bot + blt L dmae br-+1
is mapped to _
r r
bD(ar‘t e aD) - blt AT +br"+1
=Lk T r-1 - =
= {bl boar] +t (b2 boar—ll e e (bl__+1 boa s

Hence, this com(r+l,r)-semigroup (group) is projective, and it is given

by the following matrix:

-ar 1 0 {0 i i |
-a 0 1 G .~ D
r-1
(3.18)
%, O 0 B i of SO0
—a.o 0 0 {4 eIy

It is also easy to check the associative law using Theorem 3.3. We notice
that this projective com(r+l,r)-semigroup (group) depends only on the
minimal polynomial P(t) but not on the chosen matrix A. Herewith we
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obtaln a npatural class of projective groups which are parametrized by
r+1 parameters. Now the following question arises. Whether each
pro jective com(r+1,r}-grou§ is isomorphic to any group of the above class
of projective com(r+l,r)-groups? The answer is "no". Indeed each of these
groups have the following property. The polynomial

r+1 r
ot + bit e L br+1

of degree r+l1 is mapped to the polynomial

r

blt Fiow e br+1
of degree r. Thus the first peolynomial has roots o« and ZyreoaZ while
the second has roots Zyrea 2o Hence there exists an element £ (€=« in

this case) such that
r
1

Then the unit in the universal covering group is

f(E.z:} =z
for each Z;ESEF).

(E,...,&) but this is not always the case (see the examples in [.5.).
Conversely, let us suppose that there exists an element £ in a

projective com(r+1,r)-group such that

£€,2]) =z}

(r)

for each zreS Then we choose a bilinear transformation ¥ such that

1
¥(£)=w. According to Theorem 3.1 the induced com(r+l,r)-group is also

projective anq for it
» e
f {w.ull LA
Hence each polynomial of degree =r 1is a fixed point for that polynomial
mapping, and the corresponding matrix has the form (3.18).

The group Gh was Introduced in 00.2 in order to study the affine

com(n,m)-group structures. Now in the projective case we shall introduce

a similar group. In Example 3.2 above the group PGL(m;C) was introduced.

Let a non-zero vector h=l‘1;¢slil°m1 be given. Let us denote by G

h
the subset of PGL(m;C) which consists of all the non-singular matrices

%o - %01 oz “om
Moo 2%E g “im
%y %y % e Lo (3.19)
%m0 “m1 “m2 %nm
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such that the vectors

(%1 %0711 %107%1" "+ %(m-1)0"%m1’ %m0’
(~%gpr @oy~%ypr &yy=%ppneccs K 434 %00 &p4)
% ita-1)"% 1" %1 (=20 2w’ * % (m-1) (m=1) "% Fm(m-1)

are equal to h in CPm+1.

In the special case when h0=0 all of the «., have to be 0 for

1=is=m, i.e. a01=102=...=10m=0. Since the matrfg (3.18) has to be
non-singular it follows that GbOFO. But the matrix (3.19) belongs to
PCL(m;C), and thus it is determined up to a scalar multiple. If we put
u00=1 then we obtain - the group Gh defined in 1010.2 for
h=(h1,h2,....hm+1). This gives a connection between the "affine" and

“projective definition" of Ch'
Analogous to Theorem 2.1 one can prove the following theorem for the
projective case:

Theorem 3.6. Let a vector hel:Pm'1

Gh with the matrix multiplication is a closed Lie subgroup of PGL(m;C)

with complex dimension m. =

be given. The set of matrices

In analogy with the proof of Theorem 2.1 one can verify that Gh
coincides with the derived group [G(m],-) for arbitrary projective
com(m+1,m)-group (G,f) whose characteristic polynomial is

m+1 m m=1 m+1
hat - hlt + hat - ... +(-1) h

The following theorems can be proved in the same way as Theorems
2.2, 1.11 and 2.3 for the affine case.

m+1’

Theorem 3.7. Let a vector h=hn0‘ech+l be given, and let the
polynomial
'L m+l _ m i T e
P(t) = hot hlt + hat oow =4} hm+1
has exactly s different roots in € (se{l,...,m+1}). Then
Gh = C1 e CI x C0 . SR " RS (3.20)
s-1 m+l-s

Theorem 3.8. Let a non-singular projective com(m+k,m)- semigroup be

given, and let the corresponding characteristic polynomial be A‘(z?h
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Then there exists a polynomial a'" of one variable such that

- k .’ .9 .
A (zl} = A (zl)—a [zz)- T el [zk) (3.21)

and dega'.(z]$m+1. n

Theorem 3.9. Let a non-singular projective com(m+k,m)- semigroup on
¢ (group on C.\R) be given, and suppose that its characteristic
polynomial has exactly s different roots in ¢'. Then the given
projective com(m+k,m)-semigroup (group) is induced by ks_I different

projective com(m+l,m)-semigroups on c’ (groups on C.\R}. ]

In this chapter we have not considered the question about
isomorphism between two projective (affine) com(m+k,m)- groups
(semigroups). Having in mind Theorem 3, the following question appears
naturally. If two com(m+k,m)-groups (semigroups) are isomorphic, is the
isomorphism induced by a bilinear transformation? If we know that the
answer of this question is affirmative, then using compositions of the
matrix transformations (3.4), (3.5) and (3.6) we would be able to deduce

whether two com(m+k,m)- groups (semigroups) are isomorphic or not.
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