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THE CAUCHY PROBLEM FOR THE QUASILINEAR
SCHRÖDINGER EQUATION AND LOCAL WELL POSEDNESS

ALIT IBRAIMI∗ AND LIGOR NIKOLLA∗∗

Abstract. In this paper we will examine the posibility of well-posedness of
Cauchy problem in the case of Schrodinger nonlinear equations, i.e. Schrodinger
quazi-linear equations. Equations of such type appear in several fields of
physics, such as plasma fluids, classical and quantum ferromagnetism, laser
theory, etc., and also in complex geometry, where, for example, in Kähler
geometry they model ,,Schrödinger flows”. The results of this paper apply
to the superfluid film equation in fluid mechanics. The method is based on
energy estimates which can be performed thanks to the construction of an
integrating factor. This construction is of independent interest and relies on
the analysis of some new pseudo-differential operators. These equations are
also analogous to corresponding ones for hyperbolic equations, where the cor-
responding results were obtained much earlier, in the 70’s, by Kato and his
collaborators [10], [11]. The problem was extensively studied in the 90’s, in
the case of constant coefficients.

1. Introduction

We will consider the Schrodinger nonlinear equations on a compact Riemannian
manifold (M, g)

i∂tu + ∆gu = f
(
|u|2

)
u, u (0, x) = u0 (x) (1)

where f is a suitably chosen real valued function, while ∆ is the Laplace operator.
A natural question is whether the particular structure of (M, g) influences the
critical threshold for the local well-posedness Sobolev regularity of the initial data.
Let us precise what we call local well-posedness.

Definition 1. ([4]) We say that the Cauchy problem is locally well-posed for data
in the Sobolev space Hs (M) if for any R > 0 there exist T > 0 and a functional
space XT continuously embedded in C ( [−T, T ] , Hs (M)) and invariant under the
natural action of the isometrics of M , such that for every

u0 ∈ BR =
{

u0 ∈ Hs (M) | ‖u0‖Hs(M) < R
}

the Cauchy problem (1) has a unique solution u ∈ XT . Moreover:
1. The map u0 → u is uniformly continuous from BR to C ( [−T, T ] , Hs (M)).
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2. If u0 ∈ H1 (M) , u ∈ C
(

[−T, T ] , H1 (M)
)

and satisfies the usual conser-
vation laws:

‖u (t)‖L2(M) = ‖u0‖L2(M) ,

‖∇gu (t)‖L2(M) +
∫

M
F

(
|u (t, x)|2

)
dx = const,

where F is a primitive of f .

The assumption of uniform continuity of the flow map in the above definition
seems to be natural for semilinear equations. The main issue in our analysis is to
study the nonlinear evolution by the nonlinear Schrodinger equation flow of some
eigenfunctions of the Laplace-Beltrami operator on the d dimensional sphere Sd.
The situation turns out to be particularly simple in 1D. Consider the Cauchy
problem:

i∂tu + ∂2
xu = |u|2 u, u (0, x) = u0 (x) , (2)

where x ∈ S1, t ∈ R. For s < 0 we set

uk,n (t, x) = kn−s exp
(−it

(
n2 + k2n−2s

))
exp (inx) .

It is easy to check that uk,n solves (2) with initial data kn−s exp (inx). Moreover

‖uk,n (t, ∗)‖Hs(S1) ≤ |k| ,
where k is a fixed element of the interval (0, 1). Let {kn} be a sequence of real
numbers tending to k which will be specified later. We observe that uk,n (0, ∗) −
ukn,n (0, ∗) → 0 in Hs

(
S1

)
as n → ∞. Take now a positive t. Then there exist

C > 0 independent of n and δ > 0 such that

‖uk,n (t, ∗)− ukn,n (t, ∗)‖Hs(S1) ≥ C
∣∣exp

(−itn−2s
(
k2 − k2

n

))− 1
∣∣− Cn−δ. (3)

If we suppose that (2) is locally well-posed in Hs
(
S1

)
, s < 0, then (3) would

imply
lim

n→+∞
∣∣exp

(−itn−2s
(
k2 − k2

n

))− 1
∣∣ = 0 (4)

But (4) easily fails by choosing {kn} , so that
(
k2 − k2

n

)
n−2s = αnβ

for suitable α > 0, β > 0 , satisfying 2s + β < 0.

Theorem 1. Let s < 0. Then the Cauchy problem (2) is not locally well-posed
for data in Hs

(
S1

)
.

Remark 1: 1. It can be shown that (2) is locally well-posed for data in
Hs(S1), s ≥ 0.

2. The proof of Theorem 1 can be extended to equations of type

i∂tu + ∂2
xu = f

(
|u|2

)
u (5)

under weak assumptions on the nonlinearity, for example, f (λ) = ±λγ for some
γ > 0. In the case of (5) one has to deal with the following explicit solution

uk,n (t, x) = kn−s exp
(−it

(
n2 + f

(
k2n−2s

)))
exp (inx) .
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3. It is interesting to mention that if the measure invariance (if u is a solution
of (5) then so is eiθu, θ ∈ R) of (5) is violated then one can obtain the local
well-posedness of the corresponding Cauchy problem for data more singular than
L2

(
S1

)
. For instance, the Cauchy problem associated to the equation

i∂tu + ∂2
xu = u2

is locally well-posed for data in Hs
(
S1

)
, s > − 1

2 ([18]).
4. A result related to Theorem 1, due to Kenig-Ponce-Vega, when the spa-

tial domain is R is obtained in [4]. It is shown that the cubic focusing non-
linear Schrodinger equation in 1D, posed on R, is locally ill-posed for data in
Hs(R), s < 0.

We now turn to the higher dimensional case. Let (M, g) be a two dimensional
Riemannian manifold and ∆g let be the a corresponding Laplace-Beltrami opera-
tor. Now we consider the Cauchy problem

i∂tu + ∆gu = |u|2 u, u (0, x) = u0 (x) , (6)

where x ∈ M, t ∈ R.
Let M = R2, with the plain metric. Then (6) is invariant by a scaling transfor-
mation. Namely, if u(t, x) is a solution of (6) then so is

uλ (t, x) = λu
(
λ2t, λx

)

with initial data λu0 (λx). Clearly λu0 (λx) has the same norm in L2
(
R2

)
as

u0 (x). Heuristically this scaling argument suggests that (6) is locally well-posed
for data in Hs (M) , s > 0. Moreover this is the case when M = R2 or M = T 2,
with the plain metrics, due to [3] in the case R2 and [1] in the periodic case. In
this paper we will show that the above heuristics fail when M = S2.

Theorem 2. Let T > 0, s ∈ ]
3
20 , 1

4

[
, k ∈ ]0, 1[. Take M = S2 with the canonical

metric in (6). For n ∈ N , we denote by ψn : S2 → C the restriction to S2 of
the harmonic polynomial (x1 + ix2)

n. Then for t ∈ [0, T ] the solution un (t) of (6)
with initial data kφn, where φn = n

1
4−sψn can be represented as

un (t) = k exp
(−it

(
n (n + 1) + k2ωn

))
(φn + rn (t)) , (7)

where ωn ≈ n
1
2−2s and rn (t) satisfies

‖rn (t)‖Hs(S2) ≤ CT n−δ (8)

where δ > 0 and CT depends on T but not on n. Moreover there exists C > 0,
independent of T and n such that

‖un‖L∞(R;Hs(S2)) ≤ Ck. (9)

As a consequence the Cauchy problem (6) is not locally well-posedness for data in
Hs

(
S2

)
.

Remark 2: 1. The existence of u ∈ C∞
(
R× S2

)
is guaranteed by Theorem 2 of

[2].
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2. The condition s >
3
20

ensures that (7) is valid on an arbitrary time interval.
If one is interested only in the local well-posednessness, a slight modification of
the proof of Theorem 2 gives the ill-definedness of the Cauchy problem (6) in
Hs

(
S2

)
, s ∈ [

0, 1
4

[
.

3. In [4], we have proved the local well-posedness of (6) in Hs (M) , s > 1
2 .

Therefore, in the case M = S2 the critical Sobolev regularity for the local well-
posedness of (6) is in the interval

[
1
4 , 1

2

]
.

4. The choice of ψn is related to earlier works on spherical harmonics by
Stanton-Weinstein [19] and Sogge [6]. In these references, is proven that ψn max-
imizes the quotient ‖ψ‖L4 / ‖ψ‖L2 among the spherical harmonics of n degree.
Moreover, observe that ψn is concentrated on the elliptical closure x2

1 + x2
2 = 1.

The method of proof of Theorem 2 can be further exploited in order to prove
ill-posedness results in the energy space for H1 subcritical nonlinear Schrodinger
equation posed on S6. On the other hand, in the H1 supercritical case some
semilinear wave equations on M3 are not regullary in the energy space (see recent
works of Brenner-Kumlin [20] and Lebeau [5]).

Theorem 3. Let α ∈ ]0, 1]. Then the Cauchy problem

i∂tu + ∆S6u = 〈u〉αu, u (0, x) = u0 (x) , (10)

where x ∈ S6 , t ∈ R, 〈u〉 =
√

1 + |u|2 is not locally well-posed for data in
H1

(
S6

)
.

Remark 3: The question of extending our results to more general geometries than
the sphere is still open. However, if (M, g) is a compact orientable d-dimensional
Riemannian manifold with a closed stable (elliptic) geodesic, then by considering
quasimodes for initial data as constructed in [21], one easily shows that for s <
d−1
4 , d ≥ 2 the Picard iteration scheme applied to the integral formulation of the

nonlinear Schrodinger equation

i∂tu + ∆gu = ± |u|2 u

sends us at the second iteration any ball of Hs (M) into an unbounded set (see
[22]).

2. The Cauchy Problem for the Quasilinears Schrödinger Equations

We will discuss in time the local well-posedness of the Cauchy problem for
quasi-linear Schrodinger equations




∂tu = ialk(x, t; u, u, ∆xu, ∆xu)∂2
xlxku + iblk(x, t; u, u, ∆xu, ∆xu)∂2

xlxku

+
−→
b1(x, t; u, u, ∆xu, ∆xu)∆xu +

−→
b2(x, t; u, u, ∆xu, ∆xu)∆xu

+c1(x, t; u, u)u + c2(x, t; u, u)u + f(x, t)
u|t=0 = u0

x ∈ Rn, t∈ [0, T ]

(11)

We will determine in acceptable way ellipticity hypotheses on alk, blk, smoothness
on all the coefficients, ”asymptotic-flatness” on the coefficients, and as we shall see
a (necessary) ”non-trapping” condition on a Hamiltonian flow obtained from the
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coefficients and the data u0. By local well-posedness in a space B, we mean that,
given u0 ∈ B, f ∈ X, there exists T = T (u0, f), and a unique u ∈ C([0, T ]; B),
such that u solves the equation (in a suitable sense), u (0, ∗) = u0, and the mapping
(u0, f) ∈ B ×X → u ∈ C([0, T ]; B) is continuous. In general, the space B will be
a Sobolev space, like

HS(Rn) =
{

f ∈ S
′ |

∫
(1 + |ξ|2)S

∣∣∣
_

f (ξ)
∣∣∣
2

dξ < ∞
}

(12)

or of the type HS(Rn)∩L2(|x|N dx), whose presence will be explained later on. It
turns out that the classical theory of pseudo-differential operators is an appropriate
and useful tool in this task, and we will review it and utilize it.
We take into consideration the case of constant coefficients ((x, t) independed) and
semilinear non-linearity, so

{
∂tu = i∆u + F (u, u, ∆xu, ∆xu)
u|t=0 = u0 , x ∈ Rn , t ∈ [0, T ] , (13)

Let us first discuss (13) in the case when there are no derivatives in the non-
linearity, when F (u, u, ∆xu, ∆xu) = G(u, u) with G(0, 0) = 0. In this case, the
energy method applies, and gives local-well-posednessness in HS(Rn) for s > n/2.
Since the energy method will be important to us in the sequel, let us work out this
result:
Thus, we assume G(0, 0) = 0, G ∈ C∞(C × C), and we wish to show the local
well-posedness of the Cauchy problem

{
∂tu = i∆u + G(u, u)
u|t=0 = u0

(14)

in the Sobolev space HS(Rn) for s > n/2. To simplify the exposition, let us
assume that G is a polynomial, so that

G(u, u) =
∑

0≤j≤M
0≤k≤N
(j,k)6=(0,0)

cjkuju−k (15)

Let us recall some properties of Sobolev space:
1◦ ‖u‖L∞(Rn) ≤ C ‖u‖HS(Rn) for s > n/2.
2◦ For s > n/2, HS(Rn) is an algebra under pointwise multiplication. So
‖f · g‖HS ≤ C ‖f‖HS ‖g‖HS

This is a consequence of property 1◦.
3◦ For s > n/2, if G(0, 0) = 0, G is smooth, then

‖G(u, u)‖ HS ≤ R (‖u‖Hs)

where R is an increasing function that depends on G, s, with R(0) = 0. For
instance, in our polynomial case, we have

‖G(u, u)‖ Hs ≤ C
{
‖u‖M+N

HS + ‖u‖HS

}
.
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At the beginning we do the nessecarry calculations to determine the excistence and
unicity. Assume that u is a regular solution of (14). Let Ĵsu (ξ, t) = û(ξ, t)(1 +
|ξ|2)s/2. We take (14) and rewrite it as

∂tu = i∆u + G(u, u) (16)

∂tu = −i∆u +G(u, u). (16′)

We now apply Js to both equations, multiply (16) by Jsu = JSu, multiply (16’)
by Jsu integrate both equations in x, and add. Then :

∂t

∫
|Jsu|2 = i

∫
[∆JsuJsu−∆JsuJsu] +

∫
JsG(u, u)Jsu +

∫
JsG(u, u)Jsu

Since i
∫

[∆JsuJsu−∆JsuJsu] = 0, this term drops out. Using property 3◦, for

f(t) = ‖u(∗, t)‖2Hs = ‖Jsu(∗, t)‖2L2 ,

we obtain∣∣∣∣
d

dt
f(t)

∣∣∣∣ ≤ 2
∥∥∥JsG(u, u)

∥∥∥
L2
‖Jsu‖L2 ≤

C
{
‖u‖M+N

Hs + ‖u‖Hs

}
‖u‖Hs ≤ C{ f(t) + f(t)(M+N+1)/2}

Now, we define f1(t) = sup
0<r<t

‖u(∗, r)‖2Hs . Then, ∃r0, 0 ≤ r0 ≤ t such that

f1(t) = f(r0) =
∫ r0

0

f ′(r)dr + f(0) ≤ ‖u0‖2Hs + Ctf1(t) + Ctf1(t)α

where α = M+N+1
2 > 1. For t ≤ 1

2C , we obtain f1(t)≤2 ‖u0‖2Hs + 2Ctf1(t)α. Let
To be the first values wich satisfies t ≤ 1

2C for which value f1(T0)=4 ‖u0‖2Hs . Since
f1(t) is continuous,

4 ‖u0‖2Hs = f1(T0) ≤ 2 ‖u0‖2Hs + 2CT04α ‖u0‖2α
Hs

and so T0 ≥ 1
C4α ‖u0‖2α−2

Hs

. In other words, if T0 = min

{
1

2C
,

1
C4α ‖u0‖2α−2

Hs

}
,

then for we have ‖u(∗, t)‖2Hs ≤ 4 ‖u0‖2Hs , as required.
Remark 4: Suppose we considered solutions to

{
∂t = −e∆2u + i∆u + G(u, u)
u|t=0 = u0

e > 0 (17)

Then, the same conclusion holds, with C independent of e. In fact, we only need
to understand e

∫
[∆2Jsu · Jsu + ∆2Jsu · Jsu]dx = 2e

∫ |∆Jsu|2 ≥ 0. But then

∂t

∫ |Jsu|2 = −2e
∫ |∆Jsu|2 +

∫
JsG(u, u)Jsu +

∫
JsG(u, u)Jsu ≤∫

JsG(u, u)Jsu +
∫

JsG(u, u)Jsu

and we proceed as before.
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Existence of solutions. For each e > 0, a solution ue on [0, Te] to (17) is shown
by ”standard parabolic theory”. Specifically, let s > n/2, and define XT,M0 =
{v : Rn × [ 0, T ] → C([O, T ];Hs), v(0) = u0, and ‖|y|‖T = sup

[0,T ]

‖v(t)‖Hs ≤ M0}.
We then have: for any u0 ∈ Hs , ‖u0‖Hs ≤ M0/2, there exists Te = 0(e), de-
pending only on M0, s, n, G, and have a unique solution ue in XTe,M0 of system

{
∂tu = −e∆2u + i∆u + G(u, u)
u|t=0 = u0

(18)

so that sup
t∈[o,Te]

‖ue(t)‖Hs ≤ M0. This is proved by converting (18) into the integral

equation Γue = ue, where

Γω(t) = e−et∆2
u0 +

∫
e−e(t−t′)∆2

[i∆ω + G(ω, ω)]dt′ (19)

and showing that, for appropriate Te, Γ is a contraction on XTe.M0 . The only
estimate that is needed for the semigroup { e−et∆2

, t ≥ 0} is that
∥∥∥∆e−et∆2

g
∥∥∥

L2
≤

1
e1/2 t1/2

‖g‖L2 .

Set M0 = 8 ‖u0‖Hs Obtain, as above, a solution ue to (18) on [0, T e]. One
then uses the a priori estimate in Remark 4, to conclude that, if Te ≤ T0 =

min{ 1
2C

,
1

C4α ‖u0‖2α−2
Hs

}, one has sup
t∈[o,Te]

‖ue(t)‖Hs ≤ 4 ‖u0‖Hs ≤ M0
2 . We can

then iterate this local existence result, in the interval [Te, 2Te], etc., to find now
a solution of (18) in [0, T0] , 0 < e < 1, with sup

t∈[o,Te]

‖ue(t)‖Hs ≤ 4 ‖u0‖Hs . Now

consider 0 < e′ < e < 1, and ue, ue′ let be the corresponding solutions of (18). Set
v = ue − ue′ , so that

∂tv = −(e− e′)∆2ue − e′∆2v + i∆v + [G(ue, u−e)−G(ue′ , u−e′)]. (20)

Recall that sup
t∈[o,Te]

‖ue(t)‖L∞ ≤ M0 and similarly for ue′ , and that |G(ue, u−e)−

G(ue′ , u−e′)| ≤ CM0 |ue − ue′ |. Then, multiply (20) by v, conjugate (20) and
multiply by v, add, and integrate in x, to obtain

∂t

∫
|v|2 ≤ 2(e− e′)||∆2ue||L2 ||v||L2 + CM0 ||v||2L2

that, for s > 4,

sup
0<t<T

||v||2L2 ≤ C(e− e′)||v||L2 + TCM0 sup
0<t<T

||v||2L2 .

Selecting T ≤ T0 such that TCM0 < 1
2 and using that ||v||L2 ≤ C, we have v → 0

in C([0, T ];L2) as e, e′ → 0 for ue → u in C([0.T ];L2) when e → 0. The family
ue belongs to L∞([0, T ];Hs) and thus, by weak compactness, u ∈ L∞([0, T ]; Hs).
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By the interpolation inequality

||v||Hs−1 ≤ ||v||1/s
L2 ||v||(s−1)/s

Hs

we have
u ∈ L∞([0, T ];Hs) ∩ C([0, T ];Hs−1).

Uniqueness. We act now like as in existence case, with v = u− u′, and e = e′ = 0,
where u and u′ are solutions. Then obtain

sup
0<t<T

||v||L2 ≤ TCM0 sup
0<t<T

||v||L2

which yields uniqueness, by taking T ≤ 1/(2CM0).
Convergence. u ∈ C([0, T ];Hs) depends continuously on uo. Here there is a stan-
dard argument, due to Bona-Smith [7]. One solves with data uδ

0 = ϕδ ∗ u0, where
ϕ ∈ S(Rn),

∫
ϕ = 1,

∫
xαϕ(x)dx = 0∀|α| 6= 0. We then show that uδ, the solution

corresponding to uδ
0 converges in L∞([0.T0];Hs), to u as ∂ → 0. To see this, we

show
sup
[0,T0]

||uδ(t)||Hs+l ≤ Cδ−l , l > 0

and then use interpolation and the fact that

sup
[0.T0]

||(uδ − uδ′)(t)||L2 ≤ C||uδ
0 − uδ′

0 ||L2 = o(δs)

This completes our outline of the energy method applied to (13).
Remark 5: For power non-linearities, G (u, ū) = |u|α u, more refined results can
be obtained by means of mixed norm estimates (the so-called Strichartz estimates).
Now we briefly turn to the case of F (u, u, ∆xu, ∆xu) and explain what the energy
method gives in this case. Suppose that for any u ∈ Hs(Rn), s > n

2 + 1,
∣∣∣∣∣∣
∑

|α|≤s

∫

Rn

∂α
x F (u, u,∆xu, ∆xu)∂u

xudx

∣∣∣∣∣∣
≤ C(1 + ||u||ρHs)||u||2Hs (21)

Then the above proof works (here ρ = ρ(F ) ∈ N). Thus, for these examples, the
energy method gives local well-posedness in Hs , s > n/2 + 1.
Example 1. n = 1, F = ∂x(|u|ku).
2. n ≥ 1, F (u, u, ∆xu)
3. n ≥ 1, F general, ∂∂xjuF, ∂∂x,h,u

F, j = 1, ..., n, are real.
These results are due to Tsutsumi-Fukuda [16], Klainerman [12], Klainerman-
Ponce [13], Shatah [17]. The difficulty comes from trying to ”recover” the ”extra-
derivative” in the non-linear term.
Problem 1. Using the method of ,,artificial viscosity” and the previous estimate
to prove the excistence and unicity, and the Bona-Smith method we can prove
the dependness of continuity and to prove the local well-posednessness of Chauchy
problem {

∂tu = i∆u + F (u, u)
∂|t=0 = u0 ∈ Hs s > n

2

. (22)
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Proof. We will give an elaboration of the Bona-Smith method, which appears as
Step 4 in the notes, and on the other hand we will instead work with the equation

∂t(u) = i∂2
xu + iu∂xu

in order to underscore the wide range of applicability of the method. First, we
apply ∂k

x for k ≥ 3

∂t

∫

x

|∂k
xu|2 = 2Rei

∫
u∂k+1

x u∂k
xu + lower order terms (23)

(we shall drop the lower order terms in the rest of the exposition). Pairing with
∂k

x ū, integrating in x, and taking the real part gives

∂t

∫

x

||∂k
xu|2 = 2Rei

∫
u∂k+1

x u∂k
xu = −Rei

∫

x

∂xu(∂k
xu)2. (24)

If ||u0||Hk ≤ R, we can integrate in time to obtain T = T (R) > 0 for which
sup
[0,T ]

||u(t)||Hk ≤ 2||u0||Hk is bounded. Thus existence and uniqueness of a solution

on [0, T ] for this equation follows by the techniques of step for existence of solutions,
uniqueness and convergence. Now we use the Bona-Smith method to show that
the ”data to solution” map is continuous as a map from Hk to sup

[0,T ]

||u(t)||Hk ≤
2||u0||Hk . Set uδ

0 = ϕδ ∗u0 where ϕ ∈ S(Rn),
∫

ϕ = 1,
∫

xαϕ(x)dx = 0 for |α| 6= 0.
(We take ϕ when replacing ϕ̂(ξ) = 1 for |ξ| ≤ 1, ϕ̂(ξ) = 1, ϕ̂(ξ) = 0 for |ξ| ≥ 2.)
Then let uδ be the corresponding solution for uδ

0 We will treat the problem in
several steps:
Step I. For l ≥ 0, sup

[0,T ]

||uδ(t)||Hk+l ≤ 2Rδ−l. This is obtained from (23), (24) with

k replaced by k + l and also noting that ||uδ
o||Hk+l ≤ δ−l||u0||Hk .

Step II. sup
[0,T ]

||(uδ − u)(t)||L2 ≤ 2||uδ
0 − u0||L2 ≤ δkh(δ), where h(δ) → 0 and

|h(δ)| ≤ R. From the equation, ∂t(uδ − u) = i∂2
x(uδ − u) + iuδ∂xu−δ − iu∂xu =

i∂2
x(uδ − u) + i(uδ − u)∂xu−δ + iu∂x(uδ − u) pairing with uδ − u, integrate in

x, take the real part, integrate in time to obtain: ||(uδ − u)||2L2
x
≤ ||uδ

0 − u0||2L2 +
T (||∂xuδ||L∞T L∞x + ||∂xu||L∞T L∞x )||uδ−u||2L∞T L2

x
where, to estimate the last nonlinear

term, we used that ∂x(uδ − u)(uδ − u) = 1
2∂x(uδ − u)2 and integration by parts.

Thus, by suitable choice of T = T (R) > 0,

||(uδ − u)(t)||L2
x
≤ 2||uδ

0 − uo||L2 .

Now observe
|ϕ̂(δξ)− 1| ≤ δ|ξ| sup

[0,δξ]

|(∂ξϕ̂)(η)|

However, because ∂ξϕ̂(0) = 0, we also have,

|∂ξϕ̂(η)| ≤ δ|ξ| sup
[0,δξ]

|∂2
ξ ϕ̂(η)|
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Continuing, for any integer k , we have

|ϕ̂(δξ)− 1| ≤ δk|ξ|k sup
[0,δξ]

|(∂k
ξ ϕ̂)(η)|

and thus
(∫

|ϕ̂(δξ)− 1|2|û0(ξ)|2dξ

)1/2

≤ δk

(∫
sup |∂k

ξ ϕ̂(η)|2k|ûo(ξ)|2dξ

)

︸ ︷︷ ︸
h(δ)

1/2

lim
δ→0

h (δ) = 0 by dominated convergence.

Step III. For r ≤ k, sup
[0,T ]

||(uδ − u)(t)||Hr ≤ R
r
k δk−rh(δ)

k−r
k . This follows from

Step II by interpolation:

||uδ − u||Hr ≤ ||uδ − u||
k−r

k

L2 ||uδ − u||
r
k

Hk .

Step IV. sup
[0,T ]

||(uδ−u)(t)||Hk ≤ 2||uδ
0−uo||Hk . By (23) for u and uδ ∂t∂

k
x(uδ−u) =

i∂2
x∂k

x(uδ − u) + iuδ∂k+1
x u−δ − iu∂k+1

x u = i∂2
x∂k

x(uδ − u) + i(uδ − u)∂k+1
x u−δ +

iu∂k+1
x (uδ − u) and thus

||∂k
x(uδ − u)(t)||2L2

x
≤ ||∂k

x(uδ
0 − u0)||2L2

+T ||uδ − u||L∞T L2
x
||∂k+1

x uδ||L∞T L∞x ||∂k
x(uδ − u)||L∞T L2

x

+T ||∂xu||L∞x ||∂k
x(uδ − u)||2L2

x

Further, using Step I and III, we estimate the first nonlinear piece (with r = 0 in
this case) to obtain

||∂k
x(uδ − u)(t)||L2

x
≤ 2||∂k

x(uδ
0 − u0)||L2 + TRδk−2h(δ)

Step V. If both ||u10||Hk ≤ R and ||u20||Hk ≤ R, then sup
[0,T ]

||(uδ
1 − uδ

2)(T )||Hk ≤
2||u10 − u20||Hk whre T = T (R). This follows by the above techniques.
We can now complete the argument. Let ε > o, and suppose u10 and u20 are
such that ||u10||Hk ≤ R, ||u20||Hk ≤ R and ||u10 − u20||Hk ≤ ε

10 . Then obtain
δ = δ(u10, u20) such that ||uδ

10 − u10||Hk ≤ ε
10 and ||uδ

20 − u20||Hk ≤ ε
10 . Let

T = T (R) (independent of δ) be such that the claims in Steps I-V hold; then the
results of Steps I-V give that

sup
[0,T ]

||(u1 − u2)(t)||Hk ≤ ε.

Problem 2. Give the proof of local well-posedness for
{

∂tu = i∆u + F (u, u, ∆xu)
u|t=0 = u0 ∈ Hs(Rn)

for s >
n

2
+ 1.



THE CAUCHY PROBLEM FOR THE QUASILINEAR SCHRÖDINGER EQUATION... 67

Proof. The following proof it seems to apply only for k > n
2 +2. In the presentation,

I shall restrict to the case s = k integer and to n = 1(1−D), and also to monomial
nonlinearity, i.e.

F (u, u, ∂xu) = uαu−β(∂xu)γ .

Then the equation takes the form

∂tu = i∂2
xu + ulu−β(∂xu)γ .

Apply ∂k
x , k ≥ 3, and separate terms in the Leibniz expansion of F :

∂t(∂k
xu) = i∂2

x(∂k
xu) +

k−1∑
j=0

cj∂k−j
x (uαu−β)∂j

x(∂xu)γ + uαu−β∂k
x(∂xu)γ

= i∂2
x(∂k

xu) +
∑

cj∂
k−1−j
x [(α− 1)uα−1(∂xu)u−β + (β − 1)uαuβ−1(∂xu)]∂j

x(∂xu)γ

+uαuβ∂k
x(∂xu)γ

= i∂2
x(∂k

xu) + I + II

We further separate term II as:

II = γuαuβ(∂xu)γ−1∂k+1
x u + uαuβ

∑
v≥2;j≥1,...,jv≥1
j1+...+jv=k

Cj,v(∂xu)γ−ν∂j1+1
x u · · · ∂jv+1

x u

= II1 + II2

Taking together the last relation with ∂k
xu, integrating, and taking the real part

of term I, we have
∑

CjRe
∫

∂k−1−j
x [(α− 1)uα−1(∂xu)uβ + (β − 1)uαuβ−1∂xu]∂j

x(∂xu)γ∂k
xu

≤ C||∂k−1−j
x [(α− 1)uα−1(∂xu)uβ + (β − 1)uαuβ−1∂xu]∂j

x(∂xu)γ ||L2 ||∂k
xu||L2

≤ C(||uα−1(∂xu)uβ ||Hk−1 + ||uαuβ−1∂xu)||Hk−1)||(∂xu)γ ||Hk−1

and use that Hk−1 is an algebra for term II1,

Re
∫

γuαūβ (∂xū)γ−1
∂k+1

x ū∂k
x ū ≤ γ||uαūβ (∂xū)γ−1 ||L∞ ||∂k+1

x ū||L2 ||∂k
x ū||L2

Use that ∂k+1
x ū∂k

x ū = 1
2∂x

(
∂k

x ū
)2 , and integrate by parts for term II2,

Re
∫ ∑

v≥2
j1≥1,...jv≥1
j1+...+jv=k

uαuβ(∂xu)γ−v∂j1+1
x u...∂j+1

x u∂k
xu

≤ ∑ ||uαuβ(∂xu)γ−v||L∞ ||[∂j1+1
x u ... ∂jv+1

x u||L2 ||∂k
xu||L2

≤ ∑ ||uαuβ(∂xu)γ−v||L∞ ||[∂j1−1
x (∂2

xu) ... [∂jv−1
x (∂2

xu)]||L2 ||∂k
xu||L2

Since (j1 − 1) + ... + (jv − 1) = k − v ≤ k − 2, use that is in algebra. ¤
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