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Abstract

The Farey tree is a binary tree containing all rational numbers
from [0, 1] in an ordered way. It is constructed hierarchically, level
by level, using the Farey mediant sum. Some known algorithms,
connected with the Farey tree construction are reviewed and two
new algorithms are proposed.

1. Introduction

One of almost every day used mathematical theorems claims that the
set Q of rational numbers is countable, i.e., they may be ”ordered” as a
sequence 71,72,73,...,Tn, ... Lhere are infinitely many ways to construct
this sequence. One of these, known as Farey tree, has important applica-
tions in the theory of coupled oscillators and the so called ”golden route to
chaos” ([1], [3], [4], [5]).

The Farey tree is a collection of sets (called levels) FT'={T_;, Ty, T1,...},
where T_; = {r—y = 1/1,r9 = 0/1} is called seed of the tree. The n-th
level T, = {ren,...,ront11}, n = 0,1,2,..., is the decreasing sequence
of rationals r; € (0,1). The 0-th level, Top = {r; = 1/2} is the root of
FT. Further levels are T} = {rs =2/3, r3 =1/3}, To = {ry = 3/4, r5 =
3/5, r¢ = 2/5, r7 = 1/4},.... One can identify FT with the infinite binary
graph, shown in Figure 1.
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Figure 1. Farey tree

It is known that the set of vertices of FT is isomorphic with the set
QI0, 1] of rationals from the segment [0, 1]. The hierarchic construction of
the Farey tree is closely related to binary operation &, called Farey sum,
defined on Q|0, 1] by p/q®r/s = (p+7)/(g+3). The result, (p+7)/(g+3)
is called mediant of p/q and r/s, due to the fact that p/q < (p+71)/(g+3) <
r/s. Note that {Q[0, 1], ®} is commutative semi-group.

Lemma 1. ([4]) Every rational p € (0,1) can be uniquely expressed as
a mediant of two distinctive rationals p1, p2 € (0,1), i.e., p= p1 ® p2, and
occurs uniquely as a vertex of the Farey tree.

Two rationals p/q and r/s are called adjacents (or Farey neighbors) if
|[ps — gr| = 1. Note that the binary relation of adjacency is non-reflexive
and non-transitive but symmetric.

Lemma 2. If p,, p2 € Q[0, 1] are adjacent rationals, then p = p; & po
is adjacent to p; and pa.

Proof. Let p = p/q, pr = p1/q1 and p; = pa/qs. Since p1/q1 and
P2/q2 are adjacents, |p1g2 — p2gi| = 1. By definition, p = p; + p2 and
q = q1+¢q2, and |pgy —p1g| = |(p1+P2)1 — p1 (01 + @) = |P2q1 —P1g2| = 1.
Similarly, [pge — p2g| = |(p1 + p2)g2 — P2(q1 + @2)| = |[P1g2 — 21| = 1. O

The Farey tree introduces order in the set [0, 1], i.e. it embodies one
of the possible mappings N — Q . This mapping is given by

Theorem 1 [5]. Let (b, b1, . . .,bm), b; € {0,1}, by = 1 be the sequence
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of binary digits making the binary expansion of n € N. Let the sequence

(ao, a1, . ..,ax)a; € N, represents cardinal numbers of subsets of successive
units or zeros in the sequence (bg, b1, ..., bm—1, bm, by,). Then,
1
n—r,= T = [ag, @1,...,0%] .
ap +
a
1+ ) 1
o

Remark 1. Note that aj can not be less than 2 due to duplication of
the last binary digit. In fact, there is an ambiguity in continued fraction
expansion since for a; > 2, the identity holds

[aﬂyala---’ak]=aOaa1)--'7ak-1’1]'

In virtue of Theorem 1, the rationals are ordered as follows: ry = 1/2,
ro = 2/3, 13 =1/3, ry = 3/4, r5 = 3/5, r¢ = 2/5, r7 = 1/4, rg = 4/5,
Tg = 5/7, ri0 = 5/8, T = 4/7, Ti2 = 3/7, T3 = 3/8, Tia = 2/7, ™5 = 1/5,
16 = 5/6, r17 = 7/9 etc. Also, note that i belongs to the level T|iog, x| of
the Farey tree, where || represents the entire part of . Any element r}, €
T, (k=1,2,...) produces two ”children”, the left one rox1, and the right
one o, or symbolically rx — (T2x41, 72k)- It is easy to see that both belong
to the next level T, 41, since |log,(2k)| = |logo(2k+1)| = n+1. Also, each
Tk € T (k=2,3,...), has two "parents”. If k is even, then 71/, € T, is
the left one whilst the right one is r, € T}, (v < |logy(k—1)]). X k is odd,
then r_1y/2 € Ty-1 is the right ”child” and r, € T,,, (v < [logy(k —1))).

In [1] Cvitanovié gave the following formal definition of the Farey tree
level:

Definition 2. The n-th Farey tree level T,, is the monotonically
increasing sequence of 2™ contained fractions [ag, a3, . . ., ax] whose entries
a;>1,1=1,2,...,k—1,a;r > 2, add up ton + 2.

For example, T = {[4], [2,2],[1,1,2], [1, 3]} = {1/4,2/5,3/5, 3/4}.

Let o and S represent the following simple mappings of rationals from
(0,1):

a: [ag, ay, . . ., an] — [ag, a1,...,a, — 1,2],
B:lag, a1, . . ., an] > [a0,01,...,a, +1].

One can associate the next algorithm to this definition:

Algorithm 1. ([1]). The "children” of the Farey tree element 7
(k=1,2,...) are

Tok+1 = a(rx), Tok = B(rk), if k is even;
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Tak+1 = B(rx), T2r = a(re), if k is odd.

Example 1. The Algorithm 1 gives: 1/2 = [2] — {[3],[1,2]}, 1/3 =
8] — {[4],[2,2]}, 2/3 = [1,2] = {[1,1,2],[1,3]}, 1/4 = [4] — {[5],[3,2]},
2/5=12,2]— {[2,1,2],(2,3]}, 3/5=[1,1,2] — {[1,1,3],[1,1,1,2]} , 3/4 =
1,31 {[1,2,2],[1,4]},... etc.

Based on Theorem 1, Kappraff and Adamson [2] gave an effective
algorithm for constructing the Farey tree. Here, this algorithm is formally
encoded and an inverse algorithm is given as well.

Algorithm 2. (Direct algorithm, n — r, (N — Q)). Let n € N,
n = (boby...bm)2 = (bob1...bmbm)2 = (Bo,P1,...,0n), where B; =
ca.rd{b,,+1, b,,+2, ceay b,,+j}, bl + b1+1 =1A b1b1+1 =0. Then,

Tn = [B0,B1,..-Bul -

Example 2. Algorithm 2 gives ry = 1/2, ro = 2/3,r3 = 1/3, r4 =
3/4, rs = 3/5, Te = 2/5, ry = 1/4, rg = 4/5, Tg = 5/7, T = 5/8,
rir = 4/7, T2 = 3/7,7‘13 = 3/8, T4 = 2/7, T = 1/5, T = 5/6, ™y = 7/9
etc.

The following inverse algorithm gives the position of a given rational
number (from [0, 1]) in the hierarchy of the Farey tree.

Algorithm 3. (Inverse algorithm, r = p/g+— n (Q — N)). Let r € Q
with continued fraction representation r = [8, 51, . . .O4]. Then, in binary
representation, n = (1...1)(0...0)(1...1)...(1...1) blocks of "ones” and
”zeros” contain B, B, ..., Bu—1 and B, — 1 elements, respectively.

Example 3. The application of Algorithm 3 reveals that 6/7 is the
32-nd member of the Farey tree hierarchy, while 1/7 is the 63—rd. In fact,
these two rationals are boundary elements of the fifth level of the Farey
tree. :

There is another algorithm ([5]) that allows calculating of two imme-
diate successors of element 7, of the Farey tree, and these are rg, and
Tont+1. For ex. the immediate successors of rg = 5/7 are rig = 8/11 and
r19 = 7/10. The algorithm is based on the identity mentioned in Remark
1.

Algorithm 4. (Immediate successors) Let ry,, n > 1, be any element of
the Farey tree with the continued fraction expansion r,, = [Bo, 81, ..., Bu].
Then,

Ton = [ﬂO?ﬂla .. wﬂu + 1], Ton41 = [ﬂO’ﬂh' . ')ﬂp - 172] for even n;

Ton = [B0, By -+ s Bu— 1,2], Tony1=[B0,P1,...,Bu+1] forodd n.
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Example 4. The immediate successors of r12 = [2, 3] = 3/7 are roq =
[2,4] = 4/9 and 95 = [2,2,2] = 5/12; Successors of ro3 = [1,1,4] = 5/9 are
res = [1,1,3,2] = 9/16 and 47 = [1, 1, 5] = 6/11.

2. New algorithms

The Farey tree is complementary symmetric in the sense that each level
T.(n =1,2,...) is invariant under automorphism ¢:r +— 1 —r. In other
words, the equality @(ronyx) = 1 — ron+1_g—1 holds for & = 0,1,...,2".
If T, = {ren,...Ton+1._1} is taken as an ordered 2™-tuple, then T}, is a
(strictly) decreasing and accordingly ¢(T),) is a (strictly) increasing se-
quence. The vertical axis, passing through the root Ty = {1/2} splits the
tree into left sub-tree FT? and right sub-tree FT! (see Fig. 1). The left
one FT?, contains rationals from (0,1/2) and will be called ”0-subtree”.
Elements of the right sub-tree FT" fall into the complementary subinterval
(1/2,1), so this sub-tree may be called ”1-subtree”. This means that each
level T;, splits into two sub-levels: ”0-level” T2 and ”1-level” T2. In fact,

Tr{ = (Tzn, ey ’I'3,2n—1__1), T’g = (7'3,2n—1, ey 'I'2n+1_1), (3)
are decreasing sequences. For ex. T = (4/5,5/7,5/8,4/7),
T9 = (3/7,3/8,2/7,1/5).

Theorem 2. The elements of the ”1-subtree” are represented by
[1,a1,az,...,ax] | and the elements of the ”0-subtree” are represented by
[ao, Aly. . .,a,k], ao Z 2.

Proof. Let p/qg € T} (n = 1,2,...). Then, 1/2 < p/q < 1, so0
1<g¢/p<2and

p 1 1 1
e = 4)
q q-—p 1 (
7 - 1+ 1+
p p Q

where Q = E- > 1 is the consequence of 0 < (¢ — p)/p < 1 that follows
from the supposition 1/2 < p/q < 1. Assuming that 1/Q = [a1, as. .. ., ak]
gives p/q = [1, a3, az. . ..,ax].

On the other hand, if p/g € T2 (n=1,2,...), then 1 — p/q € T} and
therefore, by (4),

p_ 1 1 1
- — 1 = = i
g 14~ 4@ 442
Q
where ag =1+ |Q] >2and 0 < p=Q — |Q] < 1. X p has continuous

fraction expansion [a; . .., ax], then 1—p/q = [ag, a1,.. ., ax), ap > 2, which
completes the proof. ]
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Let the following three transformations of rationals from Q(0,1) be
introduced:

A: [ao’a'li""ak] = [a'0+ 1,(11,...0].;];
B:[ag, a1,...,ax] — [1,a0,a1, .. .ax]; (5)
C:[ag,a1,...,ak) — [1,a0 — 1,a1,...ax].

Corollary 1. C(TY) = T,}, e, C(ron+1_g) = rantk-1,
k=1,2,...,2"" L. Inversely, C"}(T}) =TY.

Proof. Since ronig-1 € TQ (k=1,2,...,2°7 1), by Th. 2,73, _, =
[ao + 1,a1,...,ax], ap = 1. Now, C(ron+1_g) = C([ap + 1,a1,...,ax)) =

[1,a0,@1,...,ak]. It is easy to see that
1, a0,a ax] = 1 and
y @0, 0a1,...,0Gk —1+[a0’a1,”.,ak]
1
[a0+170'1""7ak]= 1 ’
[a'O)a'l"'"ak]
which yields [1, ag, a1,...,ax] =1—[ag + 1,a1,...,0k] = Tontp-1. O

Remark 2. It follows from Corollary 1 that FT! = C(FT°) and
FT% = C~Y(FT).

Lemma 3. The mapping A maps T,,—; onto T2.

Proof. First, note that card(Ty,—;) = card(TP) = 2", n = 1,2,...
Suppose that p € T,,_;. Then, by Definition 2, p = [ao, a1,...,ax], where
a; 2 1,i=12,....,k—1, ax > 2, and ¥a; = n— 3. Since A(p) =
A([ao, ai,...,ak]) = [ao + 1,ay,...,ax], then the sum of partial quotients
is 1+ Xa; = n — 2, so A(p) € T,,. Further, ap > 2 which, by Theorem 2
guarantees that A(p) belongs to the ”0—subtree” This gives A(p) € T?. In
addition, A is "onto”, so A(Tp—1) =

Lemma 4. The mapping B maps T},—; onto \, 7. Here, the sign
"\” denotes a decreasing reordering of a sequence.

Proof. Similarly as in the previous proof, card(Ty,—;) =card(T?)
which makes B ”onto”. For any p = [ag,@1,...,ax] € Tp-1, a; > 1,
it =12,...,k—1, a 2 2, a.ndEa,—-n—3(Deﬁmt10n2) A]so,
B(p) = [1, a,o, ai, . ..,ax], with the sum of partial quotients 1+Xa; = n—2.
Therefore, B(p) € T Further, the first pa.rtlal quotient of B(p) is 1 making
it the member of the ”1-subtree” or B(p) € T3. |
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Figure 2. Algorithm A
Now one has the following theorem.

Theorem 3. The Farey tree may be generated by each of the next
two procedures:

Algorithm A:

A(rzﬁ'_1+k) = T3.2n—1+k,0(7'3.2n—1+k) = 1‘3.21--1._]:_1, k= 0, 1,. ..,2"_1,
n €N,

Algorithm B:

B(T2n—1+k) =T3.2n-1_f_1, C_l('r3.2n—1_k_1) =T3.on—14k,
k=0,1,...,21-1, neN.

Proof. The proof directly follows from Lemma 3 and 4 and
Corollary 1. m}

Remark 3. The Algorithms A and B are illustrated in Figures 2
and 3.
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Figure 3. Algorithm B

Remark 4. There is one and only one sequence of successive descen-
dants of the Farey tree that is generated by applying the B transformation
only (starting by 1/1 = [1]). In "ending one” notation this sequence is

n,n,1,[1,1,1,[,1,1,1),1,1,1,1,1},[1,1,1,1,1,1],... (6)
which is but the sequence of Fibonacci numbers ratios F;/Fj;, for i € N,

112358 1321 34 o

where Fy =0, Fy =1, F;; = F;+F;_;,i € N. The leftmost and rightmost
quotients in the basis of the tree are 0/1 = Fy/F; and 1/1 = F; /F,. The
limit of (6) is the Golden ratio v = (v/5 — 1)/2 ~ 0.6180339887498948482.
By introducing the sequence ®; = F'i/F;, i € N, one can see that trans-
formation B, given by (5) shifts this sequence, i.e. B(®;) = ®;41. Or, the
sequence ® = {®;|i € N}, is invariant under B, since B(®) C ®.

The sequence (6) belongs to the ”1-subtree” or FT!. Its complement
is the sequence ”symmetric” to (6)

[0}, (2, {2, 1], 2,1,1], 2,1,1,1],[2,1,1,1,1],... )
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or 0/1,1/2,1/3,2/5,3/8,5/13,8/21,13/34.. ., which is the sequence
{Fi-1/F;41, © € N}. This time, the limit is y2 =C(y) =1—v = (3 -
v5)/2 ~ 0.3819660112501051518.

Both sequences (6) and (7) play an important role in the Chaos the-
ory. They are known as typical quasiperiodic routes to chaos. In fact, if
a dynamic system contains two periodic oscillators with different frequen-
cies, f1 and fo (fi < f2), the regime in the system tries to preserve the
state where the ratio f;/fs is the simplest rational number, say 1. Then,
f1: fo = 1:1 which is called optimal resonance or 1:1 mode-locking regime.
If this is not possible, the system ”jumps” to the "reserve” mode-locking
state, f1/f2 = 1/2. If, by some reason, this state is not possible, the system
passes to the next ”the simplest” mode-locking possibility, fi/fo = 2/3 (or
fi/f2 = 1/3), and so on, up the Farey tree. If, the system follows the se-
quence of mode-locking Fibonacci ratios given by (6), this is called golden
route to chaos, and this route is the quickest one.

3. Conclusion

In this paper, two new algorithms for Farey tree construction are given.
It is based on three simple transformations of continued fractions (5), and
the complementary symmetry of the Farey tree. The most important sub-
sequence of the Farey tree is the ”golden one”, {F;/F;;1, i € N} where
{F;} is the well-known Fibonacci sequence. In the same time, it is the only
sequence taken along the Farey tree which is invariant under the mapping
B.
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