Математички Билтен 19 (XLV) 1995 (85-90) Скопје, Македонија

CONGRUENCES ON n-GROUPS

Biljana Janeva

Abstract

A description of congruences on polyadic groups is given in this paper. Namely, if $\mathbf{Q}=(Q,[])$ is an n+1-group, and \mathbf{Q}^{\wedge} is its universal covering group, then each congruence α of \mathbf{Q} can be characterized by an invariant subgroup \mathbf{H}_{α} of \mathbf{Q}^{\wedge} such that $\mathbf{H}_{\alpha}\subseteq\{a_1\cdot\ldots\cdot a_{n-1}\mid a_v\in Q\}$. Also, if $a\in Q$ and * is an operation on Q defined by $x*y=[xa^{n-2}y]$, then (Q,*) is a group, and each congruence a of \mathbf{Q} is characterized by an invariant subgroup K of (Q,*), such that for each $x\in Q$ $[xa^{n-2}K]=[a^{n-2}Kx]$. It is also shown that it may happen to have an n-group \mathbf{Q} and a congruence α on Q such that neither of the α -equivalence classes is an n-subgroup of \mathbf{Q} , and necessary and sufficient conditions are given under which such classes do exist.

In the last section of this paper new and shorter proofs of some propositions of [5] are given using the universal covering group.

0. Let us first state some preliminary definitions and results.

If $[]:(x_0,x_1,\ldots,x_n)\mapsto x_0\,x_1\ldots x_n$ is an associative n+1-ary operation on a non empty set Q, then we say that $\mathbf{Q}=(Q;[])$ is an n+1-semigroup.

The notions of n+1-subsemigroup, homomorphism, congruence on an n+1-semigroup 1) are defined in the usual way, so we will not state them

explicitly.

If **Q** is an n + 1-semigroup, then the semigroup **Q**^, given by the following presentation (in the variety of all semigroups)

following presentation (in the variety of an semigroups) $\mathbf{Q}^{\wedge} = \langle Q; \{a = a_0 \ a_1 \dots a_n \mid a = [a_0 \ a_1 \dots a_n] \} > \qquad (0.1)$ is called the universal covering semigroup of \mathbf{Q} . We can assume that $Q \subseteq \mathbf{Q}^{\wedge}$ and $Q^{\wedge} = Q \cup Q^2 \cup \dots \cup Q^n$ where $Q^i = Q \cup Q \cup Q \cup Q^2 \cup \dots \cup Q^n$ where $Q^i = Q \cup Q \cup Q \cup Q \cup Q^n$ and that the union is

disjoint.

In this paper, only for technical reasons, we are using n + 1-semigroups instead of n-semigroups.

An n+1-semigroup $\mathbf{Q} = (Q;[])$ is said to be an n+1-group iff $(\forall a_0, a_1, \ldots, a_{n-1}, b \in Q)(\exists x, y \in Q)[a_0a_1 \ldots a_{n-1}x] = b = [ya_0a_1 \ldots a_{n-1}].$

There are several axiom sistems of n+1-groups (see, for example, [1]), and we note that an n+1-semigroups is an n+1-group iff its universal covering semigroup is a group ([1]).

A homomorphism φ from an n+1-semigroup \mathbf{Q} into an n+1-semigroup \mathbf{Q}' can be uniquely extended to a homomorphism $\varphi^{\wedge}: Q^{\wedge} \to Q'^{\wedge}$, such that φ is the restriction of φ^{\wedge} on \mathbf{Q} . Namely, φ^{\wedge} is defined in the following way:

 $a=a_1 \ldots a_i \in Q^i$, $a_v \in Q \Rightarrow \varphi^{\wedge}(a)=\varphi(a_1) \ldots \varphi(a_i)$. We note that if φ is surjective or bijective, then φ^{\wedge} has the corresponding property, but it can happen φ to be injective mapping and φ^{\wedge} not to be such one ([4]). Thus, in general, if P is an n+1-subsemigroup of an n+1-semigroup \mathbb{Q} , P^{\wedge} may not be an n+1-subsemigroup of \mathbb{Q}^{\wedge} . But if we consider n+1-groups the following statement holds:

if H is an n+1-subgroup of the n+1-group \mathbb{Q} , then H^{\wedge} is a subgroup of \mathbb{Q}^{\wedge} ([4]).

- 1. Let $\mathbf{Q}=(Q;[])$ be an n+1-semigroup, and \mathbf{Q}^{\wedge} its universal covering semigroup. Let α be a congruence on \mathbf{Q} . Then $\varphi=\operatorname{nat}\alpha$ is an epimorphism from \mathbf{Q} into $\mathbf{Q}_{/\alpha}$, and $\varphi^{\wedge}=(\operatorname{nat}\alpha)^{\wedge}$ is an epimorphism from \mathbf{Q}^{\wedge} into $(\mathbf{Q}_{/\alpha})^{\wedge}$. If $\lambda^{\wedge}=\ker(\operatorname{nat}\alpha)^{\wedge}$, then α^{\wedge} is a congruence on the semigroup \mathbf{Q}^{\wedge} with the property $x_1 \ldots x_i \alpha^{\wedge} y_1 \ldots y_j \Rightarrow i=j \pmod{n}, \quad (x_v,y_{\lambda}\in Q)^2$
- 1.1°. Let $\mathbf{Q} = \text{be an } n+1$ -semigroup, and \mathbf{Q}^{\wedge} its universal coverting semigroup. If β is a congruence on \mathbf{Q}^{\wedge} , then $\alpha = \beta|_{\mathbf{Q}}$ is a congruence on \mathbf{Q} , such that $\alpha^{\wedge} \subset \beta$.
- 1.2°. Let \mathbf{Q} be an n+1-semigroup, and \mathbf{Q}^{\wedge} its universal covering semigroup. Then β is a congruence on \mathbf{Q}^{\wedge} with the property

$$\alpha = \beta|_Q \& x_1 \ldots x_i \beta y_1 \ldots y_j \Rightarrow i = j \text{ iff } a^{\wedge} = \beta.$$

- 2. Let us now give a description of the subgroups of the universal covering group \mathbf{Q}^{\wedge} of an n+1-group \mathbf{Q} .
- **2.1°.** H is a subgroup of \mathbf{Q}^{\wedge} iff there exists a natural number r, $1 \leq r \leq n$, such that r|n, and $H = H_r \cup H_r^2 \cup \ldots \cup H_r^q$, where $H_r = H \cap Q^r$, n = rq. In this case H_r is a q + 1-subgroup of H and $H_r^{\wedge} = H([3])$. \diamondsuit
- **2.2°**. H is an invariant subgroup of \mathbb{Q}^{\wedge} iff for each x in Q, $xH_r = H_rx([3])$.

Let us note another property of \mathbb{Q}^{\wedge} . Namely, if $a \in Q$, then $Q^{\wedge} = Q \cup aQ \cup \ldots \cup a^{n-1}Q$, i.e. $Q^{i} = a^{i-1}Q$. Then $(a^{i}x)(a^{j}y) = a^{i+j+1}z$, where z is the solution of the equation $[a^{n}z] = [a^{n-j-1}xa^{j}y]$, and i+j+1 is counted by modulo n. Specially, $(a^{n-1}x)(a^{n-1}y) = a^{n-1}z$, where $z = [xa^{n-1}y]$.

Here, and further on, we will assume that $x_v, y_v \in Q$ and $i, j \leq n$.

- 3. Let us now state some properties of congruences of n+1-groups. Note that, further on with \mathbf{Q} will be denoted an n+1-group, and with \mathbf{Q}^{\wedge} its universal covering group. We will often write "subgroup" instead of "n+1-subgroup" whenever the meaning will be clear from the context.
 - **3.1°**. Let α be a congruence on **Q**. Then $(Q_{/\alpha})^{\wedge} \cong Q_{/\alpha^{\wedge}}^{\wedge}$, and $x_1 \dots x_i \alpha^{\wedge} y_1 \dots y_i \Leftrightarrow$

$$\Leftrightarrow i = j \& (\exists c_0, \dots, c_{n-i} \in Q) [c_0 \dots c_{n-i} x_1 \dots x_i] \alpha [c_0 \dots c_{n-i} y_1 \dots y_i].$$
(*

Conversely, if β is a congruence on \mathbb{Q}^{\wedge} and $\alpha = \beta|_{\mathbb{Q}}$, then $\alpha^{\wedge} \subseteq \beta$, and $\alpha^{\wedge} = \beta \Leftrightarrow a_1 \ldots a_i \beta b_1 \ldots b_j \Rightarrow i = j$.

The fact that \mathbf{Q}^{\wedge} is a group allows us to describe α^{\wedge} by a corresponding normal subgroup H of \mathbf{Q}^{\wedge} . Namely:

3.2°. Let α be congruence on \mathbf{Q} , $H^{\alpha} = \{x \in Q^{\wedge} \mid x\alpha^{\wedge}e\}$. Then $H^{\alpha} \subseteq Q^{n}$ is an invariant subgroup of \mathbf{Q}^{\wedge} , and $Q_{/\alpha} = \{xH^{\alpha} \mid x \in Q\}$.

Conversely, if K is an invariant subgroup of \mathbf{Q}^{\wedge} such that $K \subseteq Q^n$, then the corresponding congruence β^K on \mathbf{Q}^{\wedge} induces a congruence $\alpha = \beta^K|_{\mathbf{Q}}$ on Q, such that $\alpha^{\wedge} = \beta^K$

A more general statement of this property is the following: if L is an invariant subgroup of \mathbf{Q}^{\wedge} , then $K = L \cap Q$ is an invariant subgroup of \mathbf{Q}^{\wedge} , such that $B^L|_{\mathbf{Q}} = \beta^K|_{\mathbf{Q}}$, and in this case $(\beta^K|_{\mathbf{Q}})^{\wedge} \subset \beta^L$ whenever L is not a subset of Q^n .

- 4. Further on we will give a description of the congruences of an n+1-group **Q** by corresponding non empty subsets of Q.
- **4.1°.** Let **Q** be an n+1-group, $a \in Q$ and let us define a binary operation * in Q by: $x*y = [xa^{n-1}y].$

Then (Q;*) is a group isomorphic to \mathbb{Q}^n by the isomorphism $\varphi: x \mapsto a^{n-1} x$.

It is easy to prove that each congruence α on (Q;[]) is a congruence on (Q;*) as well. Thus it induces an invariant subgroup $K=K^{a,\alpha}$ of (Q;*). Consequently,

 $Q'_{/\alpha} = Q_{/K} = \{x * K \mid x \in Q\} = \{[xa^{n-1}K] \mid x \in Q\}$

and

$$[xa^{n-1}K] = [Ka^{n-1}x].$$

Thus, we can describe the α -classes by special subsets of Q, which depend on the choice of the element a.

Conversely, Let K be an invariant subgroup of (Q; *). Then K induces an equivalence relation α on Q defined by $Q_{/\alpha} = Q_{/K}$. Now, the question

e is the neutral element of the group \mathbf{Q}^{\wedge} .

This is another way of stating Th. 2.7 of [5].

arises to find conditions such that α is a congruence on (Q;[]). We will answer this question considering the group Q^n , isomorphic to (Q; *).

4.2°. α is a congruence on **Q** iff $a^{n-1}K$ is an invariant subgroup of \mathbf{Q}^n , i.e. iff

 $(\forall x \in Q)xa^{n-1}K = a^{n-1}Kx.$

5. Let us recall that if H is a subgroup of an n+1-group Q with the property

 $(\forall x \in Q)[xH^n] = [H^n x],$

then we say that H is semiinvariant subgroup of \mathbf{Q} ([2]). In this case H is a class of a congruence α on **Q** defined by

 $Q_{/\alpha} = Q_{/H} = \{ [xH^n] \mid x \in Q \}.$

The following property is also true:

The subgroup H of \mathbf{Q} is semiinvariant in \mathbf{Q} iff H^n is an invariant subgroup of \mathbf{Q}^{\wedge} ([2]).

It is natural to ask the question whether every congruence on Q is obtained by a semiinvariant subgroup of Q. The answer of this question is negative. Let us give some examples to illustrate this fact.

Example 1. Let Q = (2k+1)Z be the set of odd integers. We define a ternary operation by [xyz] = x + y + z, and obtain a 3-group, such that $Q^{\wedge} \cong (Z, +)$. Let α be the congruence on Q such that

 $Q_{/\alpha} = \left\{ \{4k+1 \mid k \in Z\}, \ \{4k+3 \mid k \in Z\} \right\}.$ In this case there is no α -class that is a subgroup of \mathbf{Q} .

Example 2. Let Q be the same as in Ex. 1, and α be the congruence on Q such that

 $Q_{/\alpha} = \{\{6k+1 \mid k \in Z\}, \{6k+3 \mid k \in Z\}, \{6k+5 \mid k \in Z\}\}.$ Then $\{6k+3 \mid k \in Z\}$ is the unique α -class that is a subgroup of \mathbf{Q} .

Example 3. Let $Q = \{a_1, a_3, b_1, b_3\} \subseteq D_4$, and let define an operation by $[xyz] = x \circ y \circ z$, where "o" is the operation in the dihedral group D_4 .

Then **Q** is a 3-group, and $\mathbf{Q}^{\wedge} = D_4$. If we define α to be the congruence on Q such that

on \mathbf{Q} such that $Q_{/\alpha} = \big\{\{a_1, a_3\}, \{b_1, b_3\}\big\},$ then both the lpha-classes are subgroups of \mathbf{Q} .

These examples initiate a problem of finding conditions under which an α -class is a subgroup of **Q**. The answer is given by the following property:

- **5.1°**. Let **Q** be an n+1-group, let α be a congruence on **Q**, $a \in Q$, and $H = H^{a,\alpha}$ be the non empty subset of Q induced by α and a (as in in 4.). Then: $[xa^{n-1}H]$ is a subgroup of \mathbb{Q} iff $[x^{n+1}] \in [xa^{n+1}H]$, and in this case $[xa^{n-1}H]$ is a semiinvariant subgroup of **Q**.
- 6. In this last section of this paper we will give new proofs of some of the results of [5], using the universal covering group of an n-group Q.

Let α be a congruence on an n+1-group **Q**. Then the α -equivalence class containing the element $z \in Q$ is called a z-ideal. Using the results in the previous section it is easily seen that a z-ideal I of an n+1-group Q could be expressed in the form I = zB, where B is an invariant subgroup of \mathbf{Q}^{\wedge} , such that $B \subseteq Q^n$. Using this fact and the properties of the universal covering group \mathbf{Q}^{\wedge} we can easily prove the following:

6.1°. (Th. **2.5** in [5].) If α and β are two congruences of an n+1-group **Q**, then

$$(\exists z \in Q)z^{\alpha} = z^{\beta} \Rightarrow \alpha = \beta.$$

If I is a z-ideal, clearly $z \in I$ and I = zB for some normal subgroup B of \mathbb{Q}^{\wedge} which is a subset of Q^n . Then, if $x, y \in I$, $x = zb_1$, $y = zb_2$, we have $[zb_1z^{1-n}z^{n-2}zb_2] = [zb_1b_2] \in zB = I$. If $x, y \in Q$ and $[x\,\overline{y}\,yy^{n-2}z \in zB$, where \overline{y} is y^{1-n} , using the fact that $B \leq Q^{\wedge}$ we obtain that $[x\,\overline{x}\,x^{n-2}z] \in I = zB$ as well. Using the fact that $B \triangleleft Q^{\wedge}$ we easly check that if $y, x_1, \ldots, x_n \in Q$, $[x_1^nz] \in zB$, then $[[yx_1^n]y^{-1}z] \in zB$, i.e. $[[yx_1^n]\,\overline{y}\,y^{n-2}z] \in zB$. Thus we have proven the "if" part of the following:

- **6.2°**. (Th. **2.6** of [5]). Let **Q** be an n+1-group and $z \in Q$. The following two conditions are equivalent:
 - (i) I is z-ideal;
 - (ii) a) $z \in I$;
 - b) $x, y \in I \Rightarrow [x \overline{z} z^{n-2} y] \in I;$
 - c) $x, y \in Q$ and $[x \overline{y} y^{n-2} z] \in I \Rightarrow [y \overline{x} x^{n-2} z] \in I$;
 - d) $y, x_1, ..., x_n \in Q, [x_1^n] \in I \Rightarrow [[yx_1^n] \overline{y} y^{n-2} z] \in I.$

To prove the converse we first show that if a)-d) hold, and if $B = z^{-1}I$, i.e. I = zB, then $B \subseteq Q^n$. Using a)-d) then we prove that $B \triangleleft Q^{\wedge}$. Namely, a) implies that the unity of \mathbb{Q}^{\wedge} is in B, b) and c) imply that B is a subgroup, and d) that B is an invariant subgroup of \mathbb{Q}^{\wedge} .

These two theorems give another characterization of a congruence of an n+1-group \mathbf{Q} , i.e. each congruence α of an n+1-group \mathbf{Q} is uniquely determined by its z-ideal.

References

- [1] Celakoski, N.: On axiom system for n-groups I, Mat. bilten SDM 1 (XXVII), 5-14, 1977
- [2] Celakoski, N., Ilić, S.: A note on invariant n-subgroups of n-groups,
 Proc. Conf. "Algebra and Logic", Zagreb, 21–28, 1984
- [3] Čupona, Gj., Celakoski, N.: On representations of associatives into semigroups, MANU, Contributions, VI.2, 23-34, 1977
- [4] Čupona, Gj.: Semigroups generated by associatives, God. zb. PMF, Skopje, 15, 5-25, 1964
- [5] Monk, D. J., Sioson, M. F.: On general theory of m-groups, Fund, mathematicae 72, 233-244, 1971

КОНГРУЕНЦИИ НА п-ГРУПИ

Биљана Јанева

Резиме

Во овој труд е даден опис на конгруенции на полиадични групи. Имено, ако $\mathbf{Q}=(Q;[])$ е n-група, а \mathbf{Q}^{\wedge} е нејзината универзална покривачка група, тогаш секоја конгруенција α на \mathbf{Q} е окарактеризирана со нормална подгрупа $H_{\alpha}\subseteq\{a_1\ldots a_{n-1}\mid a_v\in Q\}$. Исто така, ако $a\in Q$ и * е операција на Q дефинирана со $x*y=[xa^{n-2}y]$, тогаш (Q;*) е група и секоја конгруенција α на Q е окарактеризирана со нормална подгрупа K од (Q;*) таква што за секој $x\in Q$, $[xa^{n-2}K]=[a^{n-2}Kx]$. Покажано е и дека може да се најде n-група \mathbf{Q} и конгруенција α на \mathbf{Q} такви што ниедна класа на еквивалентноста α да не биде n-подгрупа од \mathbf{Q} , и најдени се нужни и доволни услови при кои класа на еквивалентноста α е n-подгрупа од \mathbf{Q} .

На крајот од трудот дадени се нови, пократки докази на некои својства од [5] преку универзалната покривачка група.

Prirodno-matematichki fakultet p. fah 162 91000 Skopje Makedonija