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Abstract

We consider parabolic equations in two dimensions with inter-
face corresponding to concentrated heat capacity and singular own
source. We study non-standard spectral problems in which the
eigenvalue appears in the conjugation conditions or at the bound-
ary of the spatial domain.

Let us consider the parabolic initial boundary value problem for the
heat equation with concentrated capacity at the interior point 2 = ¢:

. L0 0*
1+ Ké(e - Ol = 55 + fla,0, Q=(0,1)x (0,T),
u(0,1) = u(1,t) = 0, (1)

u(z,0) = up(a),

where K > 0 and é(z) is the Dirac distribution. Similar problems are
already mentioned in [2], [3]. The derivations in (1) are taken in the sense
of a theory of distributions. It follows from (1), that the solution of this
problem satisfies at (z,t) € (0,€) x (0,7) and (x,t) € (£,1) x (0,7) the
equation
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ou  0*u
B az+f(wt) z€(0,§)U (£ 1), te(0,T)

u(0,t) = u(1,t) = 0, u(z,0) = up(x),

and at z = £ the conditions of conjugation

Ju
(e = ulg + 0.0~ u(E~0.1) =0, K2%e.1)= [d] @
“dE .
Let us consider for a moment a standard heat equation:
du  du
_—= = x,t t
at 8$2 +f(17t)7 (IE, )eQa (3)

u(0,t) = u(1,t) = 0, u(z,0) = uo(z).

It is well known that, using the Fourier method, the solution of the
equation (3) can be presented in the following form

(z,t) = Z —niwte [br, + vn(t)]sinnrz, (4)
where
1
b, = 2/u0(§) sinnwé d€,
0
t 1 '
t) = '2/6"2"27 |:/ f(&,t)sin nw€ d{} dr.
0 0
Setting u(z,t) = U(z)V(t), the following spectral problem can be obtained
[11:
d? , .
S @), ey U0)=U) =0 (5)

The solutions of this problem are non-trivial if A > 0 and the eigenvalues
are.
A=A, =n’r%, n=1,2,...,
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while the corresponding eigenfunctions are
U = Un(z) = sin nrz.

These functions satisfy the conditions of orthogonality:

; -1—, n=m
/ Up(z)Up(z)de = { 2 = bpm
0 0, n#m
We consider an abstract Cauchy problem
du
—J{ + Au = f(t)v t€(0,T), u(0) = up, (6)

where u, f : (0,T) — H, H is a e Hilbert space, A is a linear selfadjoint
unbounded positive definite linear operator with domain D(A) dense in H.
The product (u,v)a = (Au,v), (u,v € D(A)) satisfies the inner product
axioms. Reinforcing D(A) in the norm ||ulls = (u,u)'/2, we obtain a
Hilbert space H4 C H. Operator A extends to mapping A : Hy — H,-1,
where H 4-1 is the adjoint space for H4, and Hy C H C H4-1 form
Geljfand triple.

It is easy to see that the initial boundary value problem (3) can be
reduced in form (6) letting

0? °
A=-om, H=1L(01), Hy=W;(0,1)

Setting u = a(t)U, U € H and f = 0, we obtain

u + Au =0,
ie. .
Wy 4 av =
a(t)
. a(?) ) .
Since ) = —~\ = const. € R, the abstract spectral problem is obtained:

AU = AU, UE€H. (7)
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The spectra of (7) is discrete, all eigenvalues A = A,, n = 1,2,... are
positive,
0<A <A<y Ay — oo,

while the eigenfunctions U = U,, n = 1,2,... satisfy the conditions of
orthogonality: '

(UnaU ) - 6nma

and represent the basis of the spaces H and H4. Now,. the solution of the
problem (7) can be obtained in the followmg form

o0 t
Mﬂ:EZf“tCW#/*”ﬁvmrza,' @)
n=1 0

where
‘ Cn - (u07U )7 fn(f) = (f(t)’Un)

Settlng f(t) = 0 in (6), an a priori estimate can be done. We take i inner
product in"H of (6) with u and apply an mequahty /\ 1z, :1:) < (A:v z)'to

obtain:
du \ =
, <$,u> + (A(t)u,u) = O

%[(u,u)] = —(A(t)u,u) = 0 < =A(u,u):

i.e.

DO =

Thus, . S
, p :
EH“H2 +2X1lu))* <0,

[P < Cem 20t = e,

From the initial condition u(0) = ug, we get ||uo}|> = C, which implies the
estimate

lu(®)ll < e™|uoll. (9

Now, let B be a linear selfadjoint positive definite operator with do-
main D(B) dense in H, A is a linear selfadjoint unbounded positive definite
linear operator with domain D(A) dense in Hg and A > B. We consider
an abstract Cauchy problem:

B‘jl—t + Au = f(t), te€(0,T); u(0)=u. (10)
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It is easy to see that the problem (10) can be written in the following form

d
31/231/231‘- + AB712BY2y = f(1).

Setting @ = B/?u, B~1/24B~1/2 = A and B~'/2f(t) = f, we obtain an
abstract Cauchy problem

di - -
Z+Au=f, te(0.7); U0)= 1.

The spectral problem can be written in the form
AU = )T.

Therefore, the spectrum is discrete, all eigenvalues A= A, n=1,2,...
are positive, 0 < M < A < ---, N, — oo, while the eigenfunctions
U=U,, n=1,2,...satisfy the condition of orthogonality (f]j, Uy) = 0k
and represent the basis of the space H. If we set

U =By, 0, =B"U,
the spectral problem takes the following form:
AU = \BU. (11)
The spectrum is discrete, all eigenvalues are positive, they can be ordered as

an increasing sequence, while eigenfunctions U = U,, n = 1,2,... satisfy
the condition of orthogonality

(U;,Ux)p = (BU;,Up) = (U;,Ux) = 651

and represent the basis of the space Hp.
The solution of problem (10) can be written in the form

o0 t

u(t) = Ze‘:\"t Cn +/ei”fn(r)d7' U,,

n=1 0

where

Cp = (u07 Un)B: fn(f) = (f(i), Un)
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In order to obtain an energy estimate for the solution of the problem, when
f(t) = 0, we take inner product in Hp of (10) with 2u:

du
2 (BE,U> + 2(Au,u) =0

du du ‘ s
(BE,U,) + (Bu, E‘) +2||u]|A =0

d
(—ZZ[(BU, w)] + 2|lul|4 = 0.
Taking into account an inequality |||y > Ai||ully, we get

d d .
0= —llulll + 2llull}y > Zllulls + 2Aluli,

d < .
Zllull} + 2alul, < 0.

LT
dt' "B o5
2 1.
llulls
2 ’ -
dillulle) o o5, dx.
||“||B

Integrating the result in borders (0, 1), the following estimate can be done:

)2 N
w Ol o5,
lluolls
OIS
luollz ~ ’

lu(t)|% < |luollpe M,
or | ,
lu(®)lls < lluollpe™".

Let us get back to our model problem (1). The problem can be written
in the form (10) if one lets

1
Bu=[1+ K6z -8&Ju, (u,v)p= /u(:c)v(w)dm + Ku(&)v(€).
0



A CLASS OF NON-STANDARD SPECTRAL PROBLEMS 87

Thus, the following spectral problem can be obtained:

da M1+ Ké(x — 6)]U(z), z€(0,1)

or
Y
—T = (), z€(0,U(ED),
U(0)=0U(1) =0, (12)

[Ue=e = U+ 0)-U(E-0)=0, - [ﬁ] = AKU(¢).

de |, _¢

The solution of this problem can be written in the following explicit
form:

Asin ax, x € (0,8)
U(:zf):{

Bsin a(l - x), ze€(&1).

It is obvious that it satisfies the boundary conditions. The values of the
constants A and B can be obtained by the first condition of conjugation,
and we get A = C'sin a1l =€), B = C'sin af, where (' is a multiplicative
constant, so we can set C = 1. From (12), using the second condition of
conjugation, we obtain

asinaf cosa(l — &) 4+ asina(l — £) cosal = o’ K sin af sina(1 - £),

o= %[ctg all — &) + ctg a].

If £ = 1/2, the equation takes the following form

2 . o
o= —ctg—.
L "2
Its solutions are a,, n = 1,2,.... Now. using the condition A = a?, we
can obtain the eigenvalues A\, = a®, n = 1,2,.... The graphical solution

of this



88 Sonja Gegovska-Zajkova

problem is shown in the fig. 1, and the numerical values of @, and A, are
shown in the table 1.

1 o Ai

1 1.07687 1.15965
2 3.64360 13.27582
3 6.57833 43.27442
4 9.62956 92.72843
5 12.72230 | 161.85692

Table 1

In the fig. 2 the first three eigenfunctions Uy, U; and Us are presented.

60
40

- “ =
bb ’ : U3(x)

' ‘5\ 10 15\\ 20 51 024 7 o
-20 0 \‘.: "’l\?\ " ,l

-40 029
-60 04 -

Figure 1 Figure 2

If € #1/2 we get @ = F(a),

Fla)= %[ctg a(l — &)+ ctgaf].

It is easy to see that F(«a) is a sum of two periodical functions which have

different periods. The solutions of a transcendent equation are o = «,,
n=1,2,.... So we can obtain the eigenvalues

/\:/\”:ai, 0< A1 <Agevry Ay — 00,
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and respective eigenfunctions U = U,(2), n=1,2,....

If we change the boundary conditions in (1), the different model prob-
lem can be obtained:

T Pa?

with boundary conditions

[L+ Ké(x — 5)]% + f(a,1), (2,1) € Q = (0,1)x (0,T),

O
w(0,1) = 0, 5%(1,t) =0,
and initial value
u(2,0) = ug(z).

The problem can be written in the following form

ou  O%u (
_a_t:éﬁ-l'f(wat)’ $€(0,€)U(£,1), tG(O,T),
u(0,t) = 0, g—:(l,t) =0, u(z,0)=uo(2),

ou L ou
[b;:l r=£ B I‘ —6?(67-0

Using the same procedure as it was done in the first model problem, the
following spectral problem can be obtained

9y

&0 N
—5 = AL+ Ko = €))U(z), € (0.1),

Uy=o0, U'(1)=0,
or
AU
U \U(), v e (06U

da?

Uy=0, U'(1)=0,

e =0, - [dl’] = AKU(£).
¢

dx

The solution of this spectral problem can be written in explicit form

Asin au, 2 € (0,¢)
U(.’l?) = {
Bceosa(l —2), 2 €(£1).
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It is obvious that it automatically satisfies the boundary conditions. We
obtain the values of the constants A and B using the first condition of
conjugation: A = Ccos a(1—-¢€), B = Csin of. Here, C is a multiplicative
constant, and we can set C' = 1. By the second condition of conjugation,
and the fact that A = a?, we obtain

K

o =

[ctgaf) — tga(l - &)].

2
If £ = 1/2, the equation takes the form a = —I—;ctga and its solutions are

a,, n=1,2,....

1 a; Ai
1 1.72076 2.96101
2 6.85124 46.93949
3 12.87460 165.75532
4 19.05870 363.23404
5 31.54250 994.92931
Table 2
Now, using the condition A = «?, we can obtain the eigenvalues
Ap=al. n= 1.2....
15 - ——U1(x)
40 . — —U2(x)
20 p 7R
o %t/ "
o 5%\ 7.5 \[10 1¢[5 1 U Y A
R i e
1{ v
-40
<15~

Figure 3

Figure 4
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The graphical solution of this problem is shown in the fig. 3, and the
numerical values of «, and A, are shown in the table 2. In the fig. 4 the
first three eigenfunctions Uy, U; and Us are presented.

If € #£1/2 we get o = F(a),

F(a) = letga(€) - tga(l - £)]

It is easy to see that F(«) is'a sum of two periodical functions which
have different periods The solutions of a transcendent equatlon are

a=ap, n=12,.... So we can obtain the eigenvalues
A=Adn=al, 0<A <Ayee, Ay — 00,

and respective eigenfunctions U = U, (z), n=1,2,....
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EJHA RKJIACA HECTAHIAPIHHA
CIIEKTPAJIHU ITPOBJIEMHU

Coma ['eroscka-3ajkoBa

Pezume

Bo tpymotr ce pasrnenyBaHu mapaboNUUHU PABEHKA KOU COOIBET-
CTBYBaaT Ha paBeHKAaTa Ha TOIUIONPOBOJHOCT CO KOHIEHTDUPAH Ka-
nanmuTer. M3yuyBaHW ce HecTaHOApPIHM CIEKTPAJIHU NPoGJieMUu BO KOU
CONCTBEHUTE BPENHOCTU €€ TMOjaByBaaT BO YCIOBUTE 3a KOHjyramuja.
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