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Abstract
In this paper, we study the Abel differential equation of the
second kind
1 — Ja(@)%+ f1(2)y+ fo(w)
y = y+g(z) )

Treating different assumptions for the functions fo(z), fi(z), fo(x)
and g(z), we prove five theorems dealing with the qualitative fea-
tures of the solutions of the above mentioned equation.

It is known that the Abel equation of the second kind

y (@)Y + fi(z)y + fo(z)
y = v+ 9(0) : (1)

has been studied a lot from the point of obtaining the solution under some
assumptions for the functions fy(z), fi(z), fo(z) and g(z) ([1]). The
exploring of the qualitative properties of the solutions is found, for example,
in [2] and [4]. In this paper we obtain some qualitative properties of the
solutions of the differential equation (1), under certain assumptions for the
above mentioned functions contained in the equation.

Let us consider the equation (1) and let the functions fa(z), fi(z),
fo(z) and g(z) be continuous. Further, suppose that the conditions:

fo(z) <0, fo(z) >0, g(x) >0, y>~g(z) for z2>uz; (2)

fl(x) — B (3)

?

fo(z) A d )
r—+00 f2(:1;) o an zll»r-l{loo f2(:1;) -
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are fulfilled, where A and B are real constants. Then we have:
1. Function D(z) = fi(z) — 4fo(z) f2(z) is positive for = > z, and
therefore, there exist real functions y;(z) and y(z), such ones that:
J = h@)y—y)(y—9) (4)
y+9(z)

The curves y;(z) and yp(z) are the curves of stationary points for the
solutions y(z) of the equation (1). From the relations

D(z x .
yo(z) — ni(z) = 3% and y1(z)ya(z) = ﬁ&; < 0, it follows that

y1(z) < 0 and yo(z) > 0, for ¢ > zo. The analytic expressions for these
functions are:

1 fi(=z) 2_ fo(z) | fi(=)
n@)=-3 \/<f2(w)-) 4f2(w)+fz(z)>’

_1 fl(””))z_ fo(2) _ fil2)
v2(z) =3 \/<f2($) 4 F(2) fz(x)) .
Taking the limit values in relation (5), we obtain:

lim yl(x):% (\/32—4A-|—B) =c,

r—+00
Jim () = % (VB =44 B) —c.

Therefore, functions y;(z) and yi(z) are continuous and have finite limit
values and, hence, they are bounded.

2. The right side of the equation (1) is continuous in the region
Q= {(z,y):z > 20,y > —g(z)} and the partial derivative with respect
to y of the right side is continuous on any closed and bounded subset f).
Hence, the conditions for the existence and uniqueness of the solutions in
Q are fulfilled.

3. In the region Q4 = {(z,y) € iy < pi(z)Vy > y2(z)} is ¥’ > 0,
until in the domain Q_ ={(z, y) € L:y1(z) <y < y2(z)} is ¥’ < 0.

First, let us consider the qualitatiive properties of the solutions of the
equation (1), for the case when y;(z) and y,(z) are monotonous func-

tions. Moreover, together with some additional conditions, we are going to
suppose that conditions (2), (3) and

sup (—g(z))( inf y1(z) (6)
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are satisfied. Hence, functions y;(z) and yy(z) are monotonous increasing
functions (the similar reasoning could be deduced in other cases, also) and
let

@)
A= @)

Then we have the following theorems:
Theorem 1. There exists at least one bounded positive solution of the

equation (1) with the property lim y(z) = c2.

T—+400

Proof. First, it is easy to see that, under the above assumptions, ¢; < 0
c; > 0. On the straight line y = ¢y is ¥’ > 0. On the other hand,
the points on the curve y(z) are the maximum of the solutions, since
y' >0 for y > y2(2), and 3y’ < 0 for y < y2(z)and finally, y' = 0 for
y = y2(x). The straight line y = ¢, and the curve y = y2() can be taken
as, respectively, the top, or, the bottom margin of the retract-tube. Using
the retract method ([2]), we conclude that there exists at least one solution
y(z) in the strip y2(z) < y < ¢z, (2 > z¢). The solution tends towards

¢z, since  lim  #2(z) = cs.
r—+00

Theorem 2. There exist infinitely many bounded solutions of the
equation (1), from which a class of negative solutions can be easily selected.

Proof: Let us observe the solutions starting from the curve y = ys(z)or
from the region Q. They are monotonously decreasing and, if they don’t
reach y;(z), they remain between the bounded functions y;(z) and ya(z).
If, contrary, any of these solutions reaches y;(z) for some z = z*, then,
at point z* that solution has a minimum and for z > z* the solution
monotonously increases, so that y(z) < y;(z) for z > z*.

Indeed, if for some z7 > z* it would be y(z1) = y1(z1), then the
point z = z; would be the zero of the function ¢(z) = y(z) — yi(z),
where ¢'(z1) = ¥'(21) — yi(z1) = —yj(z1) < 0. Since the function ¢(z)
is continuous, there exists § > 0 such that ¢(z) > 0, ie., y(z) > n(z)
for 2 € (z1 — 4, 1), and that is a contradiction to the assumption that
y(z) < yi(z) for z € (z*, z1).

From this class of the solutions, we can extract the solutions starting
from the strip y1(z) < y < 0, and which are evidently negative. The

solutions starting from the strip sup (-g(z)) < y < »1(z) also belong to
>z
this class. ’
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Exmple 1. Let the given differential
equation be 06
3z42)(9z+1
[ B = e - Dy — g
y+vz+15 B .
Here (o) = 85 and o(e) = 728 b .
are monotonously increasing functions for — _oefn T oo
z > x3, where A = —0.375, B = —0.25, P
¢y = —0.5 and c; = 0.75. The graph of the so-
lutions obtained by using a computer is given -|.z.]

Fig.
in Figure 1. 1

In the following theorem we establish the strip stable for the solutions
of the equation (see [3]).

Theorem 3. The strip
A ={(z, y):51(z0) <y <1,z 2 zo} (8)
is stable for the solutions of the equation (1).

Proof: The curve of the stationary points y;(z) obviously belongs to
the strip (8) for z > zo. Let ¢ > 0 and choose

é < min{e, —c1, y1(z0) — sup (—g(z))}. Consequently, c; + ¢ < 0 and

Tz>To

n(xzg) —€ > sup (—g(x))} Using the above noticed properties of the
T2>To
solutions and the monotony of the function y;(z), the following cases are

possible:

1. The solutions with the initial condition y;1(zo) < yo < ¢1 are
monotonously decreasing, they reach the minimum on the curve y;(z) and
afterwards they monotonously increase, being under y;(z) all the time.

2. For ¢; < yo < ¢1 + ¢ the solutions monotonously decrease (above
the straight line y = ¢ ), or they have the property as solutions in the case
1.

3. If yi(wo) — € < yo < y1(zo), the solutions monotonously increase
and they are under the curve y;(z) for z > zo.

In all the three considered cases, the solution is between the straight
lines ¥ = y1(zo) —€ and y = ¢ + €. This proves the stability of the strip
A for the solutions of the equation (1).

Now, let us consider the differential equation (1) under the conditions
(2), (3), (6) and (7), but without the assumption of the monotony of the
curves of stationary points y;(z) and yz(z). Then we have the following
two theorems:

Theorem 4. The equation (1) has at least one bounded positive solu-
tion,
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Proof. Since the function y,(z) is bounded and continuous, and using

the fact that lim yy(z) = ¢2 > 0, it follows that there exist constants a

r—r 00

and b such that 0 < @ < b and a < inf yy(z), b > sup y,(z). The
T>ro z2x0

solutions have the positive (negative) coefficient of the direction on the

straight line y = a(y = b), respectively. These straight lines can be taken

as the margins of the retract-tube in the retract method, which confirms

the existence of at least one solution located between the lines y = a and

y=b.

Theorem 5. The equation (1) has a class of the bounded ncgative
solutions.

Proof. The solutions starting from the strip y(z) < y < 0 are
monotonously decreasing and, if they don’t reach yy(z), they are tend
ing towards a negative constant. On the contrary, they are linked to y1(z),
reaching the minimum on it.

The similar conclusion can be obtained for the solutions starting from

the strip sup (—g(z')) y < yi(x).
z>xo
Example 2. Let the given differential equation be
, PrtzeT e )y — (ze™® +0.125)(ze™"" + 0.5
¥y = :
y+1
In this example the curves y
of the stationary points *
y1(z) = —ze~® — 0.5 and
y2(z) = ze™% + 0,125 are
not monotonous functions
for z > zg. Several solu-

tions of the equation are
given in Figure 2.

oo
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ITIPOYYYBAIBE HA HERKOM OCOGMHMA HA
PEINIEHNJATA HA ABEJIOBATA PABEHEKA
O BTOP PE

Pane Jlazosuk™* u JbyGomup Ilpotuk **

PezumMme

Bo oBaa pabota e mpoyuyBaHa AGesnoBaTa mudpepeHOUMjalHA Pa-
Berka (1). IIpm pa3muumrym npernocTaBky 3a dpyrkmuure fo(z), fi(z),
fo(z) u g(z) ce mokaxyBaaT meT TeopeMU 3a KBAJIUTATUBHHM OCOOUHM
Ha pellleHrjaTa Ha MOTOpe [aleHATa PaBeHKa.
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