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REDUCTIONS FOR PRESENTATIONS
OF (n,m)–SEMIGROUPS INDUCED BY
REDUCTIONS FOR PRESENTATIONS

OF BINARY SEMIGROUPS

DONČO DIMOVSKI AND IRENA STOJMENOVSKA

Abstract. The question of finding a satisfactory combinatorial description
of an (n, m)–semigroup given with its (n, m)–presentation 〈B;∆〉 can be an-
swered by managing to construct a good reduction for the given 〈B;∆〉 (if
possible), which is usually quite complicated to achieve. Here, we construct
good reductions for a class of (n, m)–presentations of (n, m)–semigroups that
are induced by presentations of binary semigroups satisfying certain condi-
tions. Namely, given a semigroup presentation 〈B; Λ〉 with a good reduction
ϕ that satisfy a pair of conditions, we define an associated (n, m)–semigroup
presentation 〈B;∆〉 and derive a good reduction ψ for 〈B;∆〉. As a conse-
quence, good description of the corresponding (n, m)–semigroup is obtained.

1. Introduction and preliminaries

Bellow we give some definitions, notations and facts on combinatorial semigroup
theory and combinatorial (n,m)–semigroup theory. (For more details see [2], [4]).

Let B be a nonempty set and let B+ be the free semigroup with basis B.
B+ = (B+; ·) where B+ is the set of all finite (nonempty) sequences of the elements
of B and ’·’ is the concatenation of sequences. The element (a1, . . . , ar) ∈ Br ⊆ B+

will be denoted simply by ar
1, or by

r
a in the case when a1 = . . . = ar = a. Also,

aj
i will denote the sequence aiai+1, . . . , aj when i ≤ j or the empty sequence when

i > j. Sometimes x will be a short notation for a sequence of elements of a set
B. As usual, d will be used to denote the dimension of a sequence ar

1 ∈ Br (i.e.
d(ar

1) = r), and N will denote the set of all positive integers. By Nr and N0
r we

denote the sets {1,2, . . . , r} and {0,1, . . . , r} respectively, where r ∈ N.
Let Λ ⊆ B+ ×B+. The pair 〈B; Λ〉 is a presentation of the semigroup B+/Λ=

where Λ= is the smallest congruence on B+ containing Λ. We use the notation
〈B; Λ〉 = B+/Λ=.

A reduction for 〈B; Λ〉 is a mapping ϕ : B+ → B+ satisfying the conditions:
(i) ϕ(xuy) = ϕ(xϕ(u)y), (ii) (u, v) ∈ Λ ⇒ ϕ(u) = ϕ(v), (iii) ϕ(u)Λ=u,

for all u, v ∈ B+ and x, y ∈ B∗, where B∗ = B+ ∪ {1} and 1 is a notation for the
empty sequence.
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Each reduction ϕ for 〈B; Λ〉 is a homomorphism from B+ to (ϕ(B+); ◦), where
the operation ’◦’ on ϕ(B+) is defined by u ◦ v = ϕ(uv), u, v ∈ ϕ(B+). Moreover,
kerϕ = Λ= and thus B+/Λ= ∼= (ϕ(B+); ◦) i.e. 〈B; Λ〉 = (ϕ(B+); ◦).

A reduction ϕ for 〈B; Λ〉 is good (effective) reduction for 〈B; Λ〉 if there exists
an invariant ρ : B+ → N such that ϕ(x) 6= x implies ρ(ϕ(x)) < ρ(x) for all x ∈ B+.
In this case, for a given u ∈ B+, the reduced represent ϕ(u) can be determined in
a finite number of steps. (As a consequence, the existence of an algorithm for the
decidability i.e. solvability of the word problem is provided).

Let Q 6= ∅, n, m ∈ N and let n−m = k ≥ 1. We will also assume that m ≥ 2.
A mapping f : Qn → Qm is an (n,m)–operation and the pair Q = (Q; f) is called
an (n,m)–groupoid. A mapping f :

⋃
s≥1

Qm+sk → Qm is called a poly-(n,m)–

operation and the pair Q = (Q; f) is said to be a poly-(n, m)–groupoid.
An (n,m)–groupoid Q = (Q; f) is an (n,m)–semigroup if

f(f(xn
1 )xn+k

n+1) = f(xi
1f(xi+n

i+1 )xn+k
i+n+1) for all xυ ∈ Q, i ∈ Nk.

A poly-(n,m)–groupoid Q = (Q; f) is a poly-(n,m)–semigroup if

f(xj
1f(ym+rk

1 )xsk
j+1) = f(xj

1y
m+rk
1 xsk

j+1) for all xλ, yµ ∈ Q, s, r ≥ 1, j ∈ N0
sk.

Remark. It is not necessary to make distinction between the notions of (n,m)–
semigroup and poly-(n,m)–semigroup due to the fact there is no essential differ-
ence between them, a consequence from the general associative law (GAL) which
holds in all (n,m)–semigroups. (See [2], §5.)3

The notions of (n, m)–operations (poly-(n,m)–operations) are easily thought of as
algebras with m n-ary (poly n-ary) operations

f1, . . . , fm :
⋃

s≥1

Qm+sk → Q, where fi(xm+sk
1 )

def
= zi ⇔ f(xm+sk

1 ) = zm
1 , i ∈ Nm,

and s = 1 for the (n,m)–case (i.e. s ≥ 1 for the poly-(n,m)–case).
This allow us to translate all the notions which make sense for universal algebras
to [poly-](n,m)–goupiods, without giving their explicit definitions.

Let F(B) = (F (B); f) be a free poly-(n,m)–groupoid with a basis B. We recall
its construction. (See [2], §6).

B−1 = ∅, B0 = B, Bp+1 = Bp ∪
(
Nm ×

⋃

s≥1

Bm+sk
p

)
, F (B) =

⋃

p≥0

Bp.

The poly-(n,m)–operation f on F (B) is defined by

f(um+sk
1 ) = vm

1 ⇔ (∀i ∈ Nm) vi = (i, um+sk
1 ).

Hierarchy of the elements of F (B) is a mapping χ : F (B) → N0 defined by
χ(u) = min{p |u ∈ Bp}. Clearly, χ(u) = p ⇔ u ∈ Bp\Bp−1.

Length on F (B) is a mapping | | : F (B) → N defined by induction on χ :
|u| = 1 for u ∈ B0, |(i, um+sk

1 )| = |u1|+. . .+|um+sk| for (i, um+sk
1 ) ∈ Bp+1\Bp.

3However, there is a justified reason for introducing poly-(n, m)–semigroups in the combina-
torial (n, m)–semigroup theory (see [2], §6).
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Definition 1.1 ([4]). Let ∆ ⊆ F (B) × F (B). ∆ is said to be a set of (n,m)–
defining relations on B and the pair 〈B;∆〉 is a presentation of an (n, m)–semigroup.

Proposition 1.1 ([4]). 〈B; ∆〉 presents the factor (n, m)–semigroup F(B)/∆
where ∆ is the least congruence on F(B) such that ∆ ⊆ ∆ and F(B)/∆ is an
(n,m)–semigroup. We use the notation 〈B;∆〉 = F(B)/∆.

Definition 1.2 ([4]). Reduction for 〈B;∆〉 is a mapping ψ : F (B) → F (B) with
the following properties:

(i) (u, v) ∈ ∆ ⇒ ψ(u) = ψ(v)
(ii) ψ(i, x′(1, y)(2, y) . . . (m, y)x′′) = ψ(i, x′yx′′)
(iii) ψ(i, x′wx′′) = ψ(i, x′ψ(w)x′′)
(iv) u∆ψ(u)
(v) ψ(ψ(u)) = ψ(u),

for all u, v, w, (i, x′wx′′), (i, x′(1, y)(2, y) . . . (m, y)x′′) ∈ F (B) and x′, x′′ ∈ F (B)∗.

Theorem 1.1 ([4]). The reduction ψ : F (B) → F (B) for 〈B;∆〉 is a homomor-
phism from F(B) to (ψ(F (B)); g) where

ψ(F (B)) = {u ∈ F (B) |ψ(u) = u} and

g(um+sk
1 ) = vm

1 ⇔ vi = ψ(i, um+sk
1 ), i ∈ Nm.

Moreover, kerψ = ∆ and thus F(B)/∆ ∼= (ψ(F (B)); g) i.e. 〈B;∆〉 = (ψ(F (B)); g).

If ψ is a reduction for 〈B;∆〉 such that ψ(u) can be determined in a finite num-
ber of steps for a given u ∈ F (B), then ψ is said to be a good (effective) reduction
for 〈B;∆〉. (It provides the existence of an algorithm for calculating the reduced
represent ψ(u), u ∈ F (B)).

In the case when ∆ = ∅, the pair 〈B; ∅〉 presents the free (n,m)–semigroup with a
basis B and 〈B; ∅〉 = F(B)/≈, where ≈ is the least congruence on F(B) such that
F(B)/≈ is an (n,m)–semigroup. We recall its combinatorial description from [3].
Let ψ0 : F (B) → F (B) be a mapping defined as follows:

ψ0(b) = b, b ∈ B;

Assume that u = (i, um+sk
1 ) ∈ F (B) and that ψ0(v) ∈ F (B) is well defined for

all v ∈ F (B) such that |v| < |u|. Moreover, assume that ψ0(v) 6= v implies
|ψ0(v)| < |v|. Then, vλ = ψ0(uλ) is well defined for all λ ∈ Nm+sk and thus
v = (i, vm+sk

1 ) ∈ F (B). If there exists a λ′ ∈ Nm+sk such that vλ′ 6= uλ′ then
|v| < |u| and consequently define

ψ0(u) = ψ0(v);

If vλ = uλ for all λ ∈ Nm+sk and if u = (i, uj
1(1, wm+rk

1 ) . . . (m,wm+rk
1 )um+sk

j+m+1)
where wm+rk

1 ∈ F (B)m+rk, (r ≥ 1) and j is the smallest such index, define

ψ0(u) = ψ0(i, u
j
1w

m+rk
1 um+sk

j+m+1).
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If u doesn’t satisfy any of the conditions above, ψ0(u)
def
= u.

The mapping ψ0 is well defined and it reduces the length, i.e. ψ0(u) 6= u implies
|ψ0(u)| < |u|, u ∈ F (B).

Proposition 1.2 ([3]). The mapping ψ0 is a good reduction for 〈B; ∅〉.
Remark 1.1: Note that the reduction ψ0 does not change the first coordinate
nor decreases the dimension of the second coordinate when mapping elements
from F (B)\B. Also, ψ0 does not increase the hierarchy i.e. χ(ψ0(u)) ≤ χ(u),
u ∈ F (B). (The proofs are by induction on | | and applying the definition of ψ0.)

It is natural to look for a suitable combinatorial description of an (n,m)–
semigroup given with its (n,m)–presentation 〈B;∆〉. Such description can be
obtained if we manage to construct a good reduction for 〈B;∆〉, a task which is
not easy nor always possible to fulfill. Some examples, constructions and results
on the issue are given in [4], [5], [6]. Bellow we define a class of presentations of
(n,m)–semigroups 〈B;∆〉 such that good reductions for 〈B;∆〉 can be constructed.
These 〈B;∆〉 are induced by presentations of binary semigroups 〈B; Λ〉 with good
reductions ϕ satisfying a pair of conditions. Given such (n,m)–semigroup pre-
sentation 〈B; ∆〉, and using the good reduction ϕ for 〈B; Λ〉, as well as the good
reduction ψ0 for 〈B; ∅〉, we will construct a good reduction ψ for 〈B;∆〉.

2. Main part

Let 〈B; Λ〉 be a semigroup presentation satisfying the conditions:
(I’) d(x), d(z) > m for all (x, z) ∈ Λ
(II’) There exists a good reduction ϕ : B+ → B+ for 〈B; Λ〉 such that

d(ϕ(x)) ≡ d(x) (modk) for all x ∈ B+.

We define a set of (n,m)–defining relations ∆ ⊆ F (B)× F (B) by

∆ =
{

(u, v) ∈ F (B)× F (B)
∣∣∣ u = (i, uλ

1ar
1u

m+sk
λ+r+1), v = (i, uλ

1bl
1u

m+sk
λ+r+1),

ar
1, b

l
1 ∈ B+ and ar

1 = bl
1 in 〈B; Λ〉,

uα ∈ F (B), α ∈ {1, . . . , λ} ∪ {λ + r + 1, . . . ,m + sk},
0 ≤ λ ≤ m + sk − r, 1 ≤ r ≤ m + sk, i ∈ Nm, s ≥ 1

}
.

Thus, we get a (n,m)–semigroup presentation 〈B;∆〉 which is said to be induced
by the semigroup presentation 〈B; Λ〉.
Our aim is to construct a good reduction for 〈B;∆〉. For that purpose, we will
use the mapping ψ0 and the fact that there exists an invariant ρ : B+ → N
which is reduced by ϕ (since ϕ is a good reduction for 〈B; Λ〉). We will extend
such invariant ρ on F (B) and then, using ϕ we will define an auxiliary mapping
ψ′ : F (B) → F (B) which will reduce the extended invariant ρ. Afterwards, we
will show and display the properties of the mapping ψ′ as well as some properties
of compositions of ψ0 and ψ′. Applying these results and the properties of the
reduction ψ0 (see [3]), we will define an appropriate mapping ψ : F (B) → F (B)
(by induction on hierarchy, combining ψ0 and ψ′), and such ψ will be a good
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reduction for 〈B;∆〉. Let us now proceed to this construction.
Being ϕ a good reduction for 〈B; Λ〉, there exists a mapping ρ : B+ → N such

that ϕ(x) 6= x implies ρ(ϕ(x)) < ρ(x), for all x ∈ B+. We will extend the invariant
ρ on F (B) and define a mapping

ρ : F (B) → N0, by induction on χ as follows:

For b ∈ B, ρ(b) is already defined and since the condition (I’) for 〈B; Λ〉 implies
that ϕ(b) = b, b ∈ B (the elements from the basis are alone in the class), we can
take ρ(b) = 1, b ∈ B (the usual way of defining ρ on the basis in such cases).
Next, for (i, am+sk

1 ) ∈ B1\B0, define ρ(i, am+sk
1 ) = ρ(am+sk

1 ); Assume that ρ(v) is
well defined for all v ∈ Bp and extend the definition of ρ on B∗

p by induction on
the dimension: We put ρ(1) = 0, assume that ρ is well defined for all x ∈ B+

p with
d(x) < q, (q ∈ N) and let xq

1 ∈ B+
p .

If xq
1 = xλ

1ar
1x

q
λ+r+1 where: ar

1 ∈ B+, 1 ≤ r ≤ q, xλ, xλ+r+1 6∈ B, 0 ≤ λ ≤ q − r,
and λ is the smallest such index, then ρ(xλ

1 ) and ρ(xq
λ+r+1) are well defined (by

the hypothesis), and consequently define

ρ(xq
1) = ρ(xλ

1 ) + ρ(ar
1) + ρ(xq

λ+r+1).

If xq
1 doesn’t satisfy the conditions above, we put ρ(xq

1) =
q∑

j=1

ρ(xj).

Now, for u = (i, um+sk
1 ) ∈ Bp+1\Bp we define ρ(i, um+sk

1 ) = ρ(um+sk
1 ).

Lemma 2.1. ρ(i, xλ
1ar

1x
m+sk
λ+r+1) = ρ(xλ

1 ) + ρ(ar
1) + ρ(xm+sk

λ+r+1)
where: ar

1 ∈ B+, 1 ≤ r ≤ m + sk, xλ, xλ+r+1 6∈ B, 0 ≤ λ ≤ m + sk − r.

Proof. It is sufficient to show that ρ(xλ
1ar

1x
q
λ+r+1) = ρ(xλ

1 ) + ρ(ar
1) + ρ(xq

λ+r+1),
where: ar

1 ∈ B+, xλ, xλ+r+1 6∈ B, 0 ≤ λ ≤ m + sk − r, 1 ≤ r ≤ m + sk. Assume
that the equality holds for all x ∈ F (B)+ satisfying the conditions above and
such that d(x) < d(xλ

1ar
1x

m+sk
λ+r+1) = m + sk. If λ is the smallest index such that

xλ 6∈ B, ar
1 ∈ B+ and xλ+r+1 6∈ B, the case is trivial (follows by definition).

Hence, let xλ
1ar

1x
m+sk
λ+r+1 = xj

1b
l
1x

λ
j+l+1a

r
1x

m+sk
λ+r+1 where: bl

1 ∈ B+, xj , xj+l+1 6∈ B,
0 ≤ j ≤ λ − l − 1, (1 ≤ l ≤ λ − 1) and let j be the smallest such index. Then
ρ(xλ

1ar
1x

m+sk
λ+r+1) = ρ(xj

1b
l
1x

λ
j+l+1a

r
1x

m+sk
λ+r+1) = ρ(xj

1) + ρ(bl
1) + ρ(xλ

j+l+1a
r
1x

m+sk
λ+r+1)

and d(xλ
j+l+1a

r
1x

m+sk
λ+r+1) = m + sk − j − l < m + sk. Thus, ρ(xλ

1ar
1x

m+sk
λ+r+1) =

ρ(xj
1) + ρ(bl

1) + ρ(xλ
j+l+1) + ρ(ar

1) + ρ(xm+sk
λ+r+1) = ρ(xλ

1 ) + ρ(ar
1) + ρ(xm+sk

λ+r+1). ¤

Define a mapping ψ′ : F (B) → F (B) by induction on ρ as follows:

ψ′(b) = b, b ∈ B;

Let u = (i, um+sk
1 ) ∈ F (B)\B, assume that ψ′ is well defined for all v ∈ F (B)

such that ρ(v) < ρ(u) and moreover, assume that

ψ′(v) 6= v implies ρ(ψ′(v)) < ρ(v).

Let um+sk
1 = uλ

1ar
1u

m+sk
λ+r+1 where: ar

1 ∈ B+, 1 ≤ r ≤ m + sk, ϕ(ar
1) 6= ar

1,
uλ, uλ+r+1 6∈ B, 0 ≤ λ ≤ m + sk − r and let λ (if exists) be the smallest such in-
dex. Then, d(ϕ(ar

1)) > m (by (I’)), d(ϕ(ar
1)) ≡ d(ar

1) (modk) (by (II’)), and thus
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(i, uλ
1ϕ(ar

1)u
m+sk
λ+r+1) ∈ F (B). Also, ϕ(ar

1) 6= ar
1 implies ρ(ϕ(ar

1)) < ρ(ar
1), which

implies that ρ(i, uλ
1ϕ(ar

1)u
m+sk
λ+r+1) < ρ(u). Consequently, define

ψ′(u) = ψ′(i, uλ
1ϕ(ar

1)u
m+sk
λ+r+1).

Now, ρ(ψ′(u)) = ρ(ψ′(i, uλ
1ϕ(ar

1)u
m+sk
λ+r+1)) ≤ ρ(i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1) < ρ(u) i.e. the

mapping ψ′ is well defined in this case, and it reduces the invariant ρ.
If um+sk

1 doesn’t satisfy the conditions above, we put

ψ′(u) = u.

Remark 2.1: Note that ψ′ does not change the first coordinate of (i, x) ∈ F (B)\B.
Furthermore, χ(ψ′(u)) = χ(u), u ∈ F (B). (Easy to verify, by induction on ρ).

Lemma 2.2. (1) ρ(ψ′(u)) ≤ ρ(u) and ρ(ψ′(u)) = ρ(u) ⇔ ψ′(u) = u

(2) ψ′(i, uλ
1ar

1u
m+sk
λ+r+1) = ψ′(i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1), where

(i, uλ
1ar

1u
m+sk
λ+r+1) ∈ F (B) and ar

1 ∈ B+, 1 ≤ r ≤ m + sk, 0 ≤ λ ≤ m + sk − r.

(3) Let (j, ym+sk
1 ), (i, x ym+sk

1 z) ∈ F (B).
If ψ′(j, ym+sk

1 ) = (j, y′1
m+lk) then ψ′(i, x ym+sk

1 z) = ψ′(i, x y′1
m+lkz).

Proof. (1). Consequence from the fact that ψ′(u) 6= u implies ρ(ψ′(u)) < ρ(u)
which is shown above, while defining ψ′.
(2). Firstly, will show that ψ′(i, uλ

1ar
1u

m+sk
λ+r+1) = ψ′(i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1) for all

(i, uλ
1ar

1u
m+sk
λ+r+1) ∈ F (B) where ar

1 ∈ B+ (1 ≤ r ≤ m + sk) and uλ, uλ+r+1 6∈ B,
(0 ≤ λ ≤ m+sk−r). If ϕ(ar

1) = ar
1 the case is trivial, so let ϕ(ar

1) 6= ar
1 and assume

that the equality stands for all v ∈ F (B) with ρ(v) < ρ(i, uλ
1ar

1u
m+sk
λ+r+1). If λ is

the smallest index such that uλ, uλ+r+1 6∈ B, the conclusion follows by definition.
Let uλ

1 = uj
1b

l
1u

λ
j+l+1 where: bl

1 ∈ B+, 1 ≤ l ≤ λ − 1, ϕ(bl
1) 6= bl

1, uj , uj+l+1 6∈ B,
0 ≤ j ≤ λ− l − 1, and assume that j is the smallest such index. Then

ψ′(i, uλ
1ar

1u
m+sk
λ+r+1) = ψ′(i, uj

1b
l
1u

λ
j+l+1a

r
1u

m+sk
λ+r+1) = ψ′(i, uj

1ϕ(bl
1)u

λ
j+l+1a

r
1u

m+sk
λ+r+1),

and moreover, ϕ(bl
1) 6= bl

1 implies ρ(ϕ(bl
1)) < ρ(bl

1), which implies that
ρ(uj

1ϕ(bl
1)u

λ
j+l+1a

r
1u

m+sk
λ+r+1) < ρ(uj

1b
l
1u

λ
j+l+1a

r
1u

m+sk
λ+r+1) = ρ(uλ

1ar
1u

m+sk
λ+r+1). Thus,

ψ′(i, uj
1ϕ(bl

1)u
λ
j+l+1a

r
1u

m+sk
λ+r+1) = ψ′(i, uj

1ϕ(bl
1)u

λ
j+l+1ϕ(ar

1)u
m+sk
λ+r+1) =

ψ′(i, uj
1b

l
1u

λ
j+l+1ϕ(ar

1)u
m+sk
λ+r+1) = ψ′(i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1).

To show the proposition (2), first assume that there exist µ′ ∈ {1, . . . , λ} and
µ′′ ∈ {λ+r+1, . . . ,m+sk} such that uµ′ , uµ′′ 6∈ B. Moreover, let µ′ and µ′′ be the
biggest and the smallest such index respectively. Then, uλ

1 = uµ′
1 bl

1 where bl
1 ∈ B+,

l = λ − µ′ ≥ 0, and, um+sk
λ+r+1 = cq

1u
m+sk
µ′′ where cq

1 ∈ B+, q = µ′′ − λ − r − 1 ≥ 0.
Now, using the equality from above, we get

ψ′(i, uλ
1ar

1u
m+sk
λ+r+1) = ψ′(i, uµ′

1 bl
1a

r
1c

q
1u

m+sk
µ′′ ) = ψ′(i, uµ′

1 ϕ(bl
1a

r
1c

q
1)u

m+sk
µ′′ ) =

ψ′(i, uµ′
1 ϕ(bl

1ϕ(ar
1)c

q
1)u

m+sk
µ′′ ) = ψ′(i, uµ′

1 bl
1ϕ(ar

1)c
q
1u

m+sk
µ′′ ) = ψ′(i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1).
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If uλ
1 ∈ B+ or um+sk

λ+r+1 ∈ B+ the proof is analogical. If um+sk
1 ∈ B+ the statement

follows from definition of ψ′ and the properties of the reduction ϕ.
(3). By induction on ρ. Assume that the proposition stands for all v ∈ F (B)

with ρ(v) < ρ(j, ym+sk
1 ) and let ψ′(j, ym+sk

1 ) = (j, y′1
m+lk) 6= (j, ym+sk

1 ). Then
ym+sk
1 = yλ

1 ar
1y

m+sk
λ+r+1 for some 1 ≤ r ≤ m + sk and 0 ≤ λ ≤ m + sk − r, where

ar
1 ∈ B+, ϕ(ar

1) 6= ar
1 and yλ, yλ+r+1 6∈ B. We can (but not need to) take λ

to be the smallest such index. Now, ψ′(j, yλ
1 ϕ(ar

1)y
m+sk
λ+r+1) = (j, y′1

m+lk) and we
have that ρ(j, yλ

1 ϕ(ar
1)y

m+sk
λ+r+1) < ρ(j, ym+sk

1 ). Applying (2) and the inductive
hypothesis for the element (j, yλ

1 ϕ(ar
1)y

m+sk
λ+r+1), we obtain that ψ′(i, x ym+sk

1 z) =
ψ′(i, x yλ

1 ar
1y

m+sk
λ+r+1z) = ψ′(i, x yλ

1 ϕ(ar
1)y

m+sk
λ+r+1z) = ψ′(i, x y′1

m+lkz). ¤

Lemma 2.3. (1) If (u, v) ∈ ∆ then ψ′(u) = ψ′(v).
(2) If ψ′(u) 6= u, there exist a sequence u0, u1, . . . , ut−1, ut ∈ F (B)

such that u = u0∆u1∆ . . . ∆ut−1∆ut = ψ′(u), (t ≥ 1).
(3) u∆ψ′(u), u ∈ F (B)
(4) ψ′(ψ′(u)) = ψ′(u), u ∈ F (B).

Proof. (1). Consequence from (2) in Lemma 2.2.
(2). Let u ∈ F (B) and let ψ′(u) 6= u. Then u = (i, um+sk

1 ) ∈ F (B)\B and
assume that the proposition stands for all v ∈ F (B) with ρ(v) < ρ(u). Since
ψ′(u) 6= u we have that ψ′(u) = ψ′(i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1) for some ar

1 ∈ B+ and
uλ, uλ+r+1 6∈ B where ϕ(ar

1) 6= ar
1, which implies that ρ(i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1) < ρ(u).

Also, u = (i, uλ
1ar

1u
m+sk
λ+r+1)∆(i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1).

If ψ′(i, uλ
1ϕ(ar

1)u
m+sk
λ+r+1) = (i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1) we immediately get u∆ψ′(u).

If ψ′(i, uλ
1ϕ(ar

1)u
m+sk
λ+r+1) 6= (i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1), the hypothesis implies that there

exists a sequence u0, u1, . . . , ut−1, ut ∈ F (B), (t ≥ 1) such that

(i, uλ
1ϕ(ar

1)u
m+sk
λ+r+1)∆u1∆ . . . ∆ut−1∆ψ′(i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1), and thus

u∆(i, uλ
1ϕ(ar

1)u
m+sk
λ+r+1)∆u1∆ . . . ∆ut−1∆ψ′(i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1) = ψ′(u).

(3). Direct consequence from (2).
(4). By induction on ρ. Clearly it holds on B, let (i, um+sk

1 ) ∈ F (B)\B, and
assume that ψ′(ψ′(v)) = ψ′(v) for all v ∈ F (B) with ρ(v) < ρ(i, um+sk

1 ). Let also
ψ′(i, um+sk

1 ) 6= (i, um+sk
1 ). (Otherwise the equality is trivial). Then ψ′(i, um+sk

1 ) =
ψ′(i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1) for some ar

1 ∈ B+ such that ϕ(ar
1) 6= ar

1 (1 ≤ r ≤ m + sk),
and some uλ, uλ+r+1 such that uλ, uλ+r+1 6∈ B, (0 ≤ λ ≤ m + sk − r). Moreover,
ρ(i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1) < ρ(i, um+sk

1 ) and by the hypothesis we get ψ′(ψ′(i, um+sk
1 )) =

ψ′(ψ′(i, uλ
1ϕ(ar

1)u
m+sk
λ+r+1)) = ψ′(i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1) = ψ′(i, um+sk

1 ). ¤

Lemma 2.4. (1) ψ0ψ
′ψ0(u) = ψ′ψ0(u),

(2) ψ′ψ0ψ
′(u) = ψ′ψ0(u), u ∈ F (B).

Proof. (1). We will show that v ∈ ψ0(F (B)) implies ψ′(v) ∈ ψ0(F (B)). (By
induction on ρ). Since it holds on B, let v = (i, vm+sk

1 ) ∈ ψ0(F (B))\B and
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assume that the statement holds for all z ∈ ψ0(F (B)) with ρ(z) < ρ(i, vm+sk
1 ).

Let also ψ′(i, vm+sk
1 ) 6= (i, vm+sk

1 ). Then, (i, vm+sk
1 ) = (i, vλ

1 ar
1v

m+sk
λ+r+1) for some

1 ≤ r ≤ m+sk, 0 ≤ λ ≤ m+sk− r, where: ar
1 ∈ B+, ϕ(ar

1) 6= ar
1, vλ, vλ+r+1 6∈ B,

ρ(i, vλ
1 ϕ(ar

1)v
m+sk
λ+r+1) < ρ(v), and, ψ′(v) = ψ′(i, vm+sk

1 ) = ψ′(i, vλ
1 ϕ(ar

1)v
m+sk
λ+r+1).

Being ar
1 ∈ B+, ϕ(ar

1) ∈ B+ and (i, vλ
1 ar

1v
m+sk
λ+r+1) ∈ ψ0(F (B)), it is easy to conclude

that (i, vλ
1 ϕ(ar

1)v
m+sk
λ+r+1) ∈ ψ0(F (B)). Thus, and by the inductive hypothesis, we

get that ψ′(i, vλ
1 ϕ(ar

1)v
m+sk
λ+r+1) ∈ ψ0(F (B)). Therefore, ψ′(v) ∈ ψ0(F (B)).

Consequently, ψ′ψ0(u) ∈ ψ0(F (B)) for all u ∈ F (B), and now (1) follows from
ψ0ψ0 = ψ0 (Proposition 1.2).

(2). Let u ∈ F (B) and let ψ′(u) 6= u. (Otherwise the case is trivial). Then
u = (i, um+sk

1 ) ∈ F (B)\B and um+sk
1 consists a subsequence uλar

1uλ+r+1 such
that ar

1 ∈ B+ (1 ≤ r ≤ m + sk), ϕ(ar
1) 6= ar

1, uλ, uλ+r+1 6∈ B, (0 ≤ λ ≤ m + sk −
r) and, ψ′(i, um+sk

1 ) = ψ′(i, uλ
1ϕ(ar

1)u
m+sk
λ+r+1). Also, ρ(i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1) < ρ(u).

Assuming that the equality stands for all v ∈ F (B) with ρ(v) < ρ(u) we get

ψ′ψ0ψ
′(u) = ψ′ψ0ψ

′(i, uλ
1ϕ(ar

1)u
m+sk
λ+r+1) = ψ′ψ0(i, uλ

1ϕ(ar
1)u

m+sk
λ+r+1).

Consider the images ψ0(i, uλ
1ϕ(ar

1)u
m+sk
λ+r+1) and ψ0(i, uλ

1ar
1u

m+sk
λ+r+1). Recall Remark

1.1 and assume that ψ0(i, uλ
1ϕ(ar

1)u
m+sk
λ+r+1) = (i, u′1

m+s0k). Since ϕ(ar
1) ∈ B+,

there exists an integer λ0 ≥ λ such that u′λ0+1 . . . u′λ0+d(ϕ(ar
1)) = ϕ(ar

1). (Easy to
conclude, by induction on the length). Similarly, and being ar

1 ∈ B+, we obtain
that ψ0(i, uλ

1ar
1u

m+sk
λ+r+1) =

(
i, u′1 . . . u′λ0

ar
1u
′
λ0+d(ϕ(ar

1))+1 . . . u′m+s0k

)
. Therefore,

ψ′ψ0(i, uλ
1ϕ(ar

1)u
m+sk
λ+r+1) = ψ′

(
i, u′1 . . . u′λ0

ϕ(ar
1)u

′
λ0+d(ϕ(ar

1))+1 . . . u′m+s0k

)
=

ψ′
(
i, u′1 . . . u′λ0

ar
1u
′
λ0+d(ϕ(ar

1))+1 . . . u′m+s0k

)
= ψ′ψ0(i, uλ

1ar
1u

m+sk
λ+r+1) = ψ′ψ0(u).

Hence, ψ′ψ0ψ
′(u) = ψ′ψ0(u). ¤

Define a mapping ψ : F (B) → F (B) by induction on χ as follows:

ψ(b) = b, b ∈ B;

Let u = (i, um+sk
1 ) ∈ F (B)\B and assume that ψ(v) is well defined for all v ∈ F (B)

such that χ(v) < χ(u). Hence, ψ(uµ) is well defined for all µ ∈ Nm+sk, and
consequently define ψ(u) by

ψ(i, um+sk
1 ) = ψ′ψ0(i, ψ(u1) . . . ψ(um+sk)).

Lemma 2.5. (1) χ(ψ(u)) ≤ χ(u)
(2) ψ′(ψ(u)) = ψ(u)
(3) ψ0(ψ(u)) = ψ(u)
(4) ψ(ψ(u)) = ψ(u), for all u ∈ F (B).

Proof. (1). By induction on the hierarchy. χ(ψ(b)) = χ(b), b ∈ B, assume
that χ(ψ(v)) ≤ χ(v) for all v ∈ Bp and let u = (i, um+sk

1 ) ∈ Bp+1\Bp. Then,
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χ(ψ(uα)) ≤ χ(uα), α ∈ Nm+sk and applying the properties of χ for the mappings
ψ′ and ψ0 respectively (Remark 2.1 and Remark 1.1), we get

χ(ψ(i, um+sk
1 )) = χ(ψ′ψ0(i, ψ(u1) . . . ψ(um+sk))) =

χ(ψ0(i, ψ(u1) . . . ψ(um+sk))) ≤ χ(i, ψ(u1) . . . ψ(um+sk)) ≤ χ(i, um+sk
1 ).

(2). Consequence from (4) in Lemma 2.3.
(3). Consequence from (1) in Lemma 2.4.
(4). Firstly, we will show that all u ∈ F (B)\B satisfy

ψ(u) = (i, wm+rk
1 ) where i ∈ Nm and wη ∈ ψ(F (B)), η ∈ Nm+rk.

By induction on χ. For u ∈ B1\B, u = (i, am+sk
1 ) where i ∈ Nm and am+sk

1 ∈ B+.
Hence, ψ(u) = ψ′ψ0(i, am+sk

1 ) = ψ′(i, am+sk
1 ) = (i, ϕ(am+sk

1 )) and the conclusion
follows immediately, being B ⊆ ψ(F (B)). Assume that the statement holds for
all u′ ∈ Bp and let u ∈ Bp+1\Bp. Then, u = (i, um+sk

1 ) for some i ∈ Nm and
um+sk

1 ∈ B+
p , and ψ(u) = ψ(i, um+sk

1 ) = ψ′ψ0(i, ψ(u1) . . . ψ(um+sk)). Recalling
that none of the mappings ψ0 and ψ′ changes the first coordinate, assume that
ψ′ψ0(i, ψ(u1) . . . ψ(um+sk)) = (i, wm+rk

1 ). Let also ψ0(i, ψ(u1) . . . ψ(um+sk)) =
(i, vm+lk

1 ). We will show that vµ ∈ ψ(F (B)), µ ∈ Nm+lk:
If ψ0(i, ψ(u1) . . . ψ(um+sk)) = (i, ψ(u1) . . . ψ(um+sk)) the conclusion is trivial. If
ψ0(i, ψ(u1) . . . ψ(um+sk)) 6= (i, ψ(u1) . . . ψ(um+sk)), then there exists ϑ ∈ N0

sk such
that ψ(uϑ+β) = (β, ym+qk

1 ), β ∈ Nm (since ψ0ψ = ψ), and thus (i, vm+lk
1 ) =

ψ0(i, ψ(u1) . . . ψ(uϑ)ym+qk
1 ψ(uϑ+m+1) . . . ψ(um+sk)). Moreover, the hypothesis im-

plies that yj ∈ ψ(F (B)), j ∈ Nm+qk. Consequently, if
ψ0(i, ψ(u1) . . . ψ(uϑ)ym+qk

1 ψ(uϑ+m+1) . . . ψ(um+sk)) =
(i, ψ(u1) . . . ψ(uϑ)ym+qk

1 ψ(uϑ+m+1) . . . ψ(um+sk)),
we immediately get vµ ∈ ψ(F (B)), µ ∈ Nm+lk. Otherwise, the conclusion follows
by induction (i.e. repeating the same process).
Hence, we have that ψ(u) = (i, wm+rk

1 ) = ψ′(i, vm+lk
1 ), where vµ ∈ ψ(F (B)),

µ ∈ Nm+lk. Thus, and being B ⊆ ψ(F (B)) it is easy to verify that wη ∈ ψ(F (B)),
η ∈ Nm+rk. (Induction on ρ).

Let us now proof the statement (4). By induction on χ.
It is clear that ψψ(b) = ψ(b), b ∈ B, assume that ψψ(z) = ψ(z) for all z ∈ F (B)
with χ(z) ≤ p, and let (i, um+sk

1 ) ∈ Bp+1\Bp. We have showed that ψ(i, um+sk
1 ) =

(i, wm+rk
1 ) (for some r ≥ 1) where wη ∈ ψ(F (B)), η ∈ Nm+rk and thus wη = ψ(w′η)

for some w′η ∈ F (B), η ∈ Nm+rk. Furthermore, χ(w′η) < χ(i, um+sk
1 ), η ∈ Nm+rk

and applying the hypothesis we get that ψψ(w′η) = ψ(w′η), i.e. ψ(wη) = wη for all
η ∈ Nm+rk. Thus, and by (2) and (3) (this lemma) we obtain

ψψ(i, um+sk
1 ) = ψ(i, wm+rk

1 ) = ψ′ψ0(i, ψ(w1) . . . ψ(wm+rk)) =

ψ′ψ0(i, wm+rk
1 ) = ψ′ψ0ψ(i, um+sk

1 ) = ψ(i, um+sk
1 ). ¤

Proposition 2.1. The mapping ψ is a good reduction for 〈B; ∆〉.
Proof. (i). Let u∆v, i.e. let u = (i, uλ

1ar
1u

m+sk
λ+r+1), v = (i, uλ

1bl
1u

m+sk
λ+r+1) where

ar
1 = bl

1 in 〈B; Λ〉, 0 ≤ λ ≤ m + sk − r, 1 ≤ r ≤ m + sk. Then, ϕ(ar
1) = ϕ(bl

1) and
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by Lemma 2.4-(2) and Lemma 2.2-(2) we obtain
ψ(u) = ψ′ψ0(i, ψ(u1) . . . ψ(uλ)ar

1ψ(uλ+r+1) . . . ψ(um+sk)) =
ψ′ψ0ψ

′(i, ψ(u1) . . . ψ(uλ)ar
1ψ(uλ+r+1) . . . ψ(um+sk)) =

ψ′ψ0ψ
′(i, ψ(u1) . . . ψ(uλ)ϕ(ar

1)ψ(uλ+r+1) . . . ψ(um+sk)) =
ψ′ψ0ψ

′(i, ψ(u1) . . . ψ(uλ)ϕ(bl
1)ψ(uλ+r+1) . . . ψ(um+sk)) =

ψ′ψ0ψ
′(i, ψ(u1) . . . ψ(uλ)bl

1ψ(uλ+r+1) . . . ψ(um+sk)) =
ψ′ψ0(i, ψ(u1) . . . ψ(uλ)bl

1ψ(uλ+r+1) . . . ψ(um+sk)) = ψ(v).

(ii). Let (i, x′(1, y) . . . (m, y)x′′) ∈ F (B). Then

ψ(i, x′(1, y) . . . (m, y)x′′) = ψ′ψ0(i, ψ(x′)ψ(1, y) . . . ψ(m, y)ψ(x′′)) =

ψ′ψ0(i, ψ(x′)ψ′ψ0(1, ψ(y)) . . . ψ′ψ0(m,ψ(y))ψ(x′′)),

where ψ(x′), ψ(x′′) and ψ(y) denote the sequences of the images by ψ of the
elements in the sequences x′, x′′ and y respectively.
Assume that ψ0(j, ψ(y)) = (j, y0) and that ψ′(j, y0) = (j, y′), j ∈ Nm. (Note that
such assumptions are correct, according to Remark 1.1 and Remark 2.1). Applying
(2) from Lemma 2.4, (3) from Lemma 2.2 and the properties of ψ0, we get that

ψ′ψ0(i, ψ(x′)ψ′ψ0(1, ψ(y)) . . . ψ′ψ0(m, ψ(y))ψ(x′′)) =

ψ′ψ0(i, ψ(x′)(1, y′) . . . (m, y′)ψ(x′′)) =

ψ′ψ0(i, ψ(x′) y′ ψ(x′′)) =

ψ′ψ0ψ
′(i, ψ(x′) y′ ψ(x′′)) =

ψ′ψ0ψ
′(i, ψ(x′) y0 ψ(x′′)) =

ψ′ψ0(i, ψ(x′) y0 ψ(x′′)) =

ψ′ψ0(i, ψ(x′)(1, y0) . . . (m, y0)ψ(x′′)) =

ψ′ψ0(i, ψ(x′)(1, ψ(y)) . . . (m, ψ(y))ψ(x′′)) =

ψ′ψ0(i, ψ(x′) ψ(y) ψ(x′′)) = ψ(i, x′yx′′).

(iii). Follows from (4) in Lemma 2.5, applying the definition of ψ.
(iv). By induction on χ . If u ∈ B then ψ(u) = u∆u. Assume that ψ(v)∆v

for all v ∈ F (B) with χ(v) ≤ p, and let u = (i, um+sk
1 ) ∈ Bp+1\Bp. Applying the

hypothesis and the corresponding property for ψ′ and ψ0 respectively, we get

ψ(i, um+sk
1 ) = ψ′ψ0(i, ψ(u1) . . . ψ(um+sk))∆ ψ0(i, ψ(u1) . . . ψ(um+sk)) ≈

(i, ψ(u1) . . . ψ(um+sk)) = fi(ψ(u1) . . . ψ(um+sk))∆ fi(um+sk
1 ) = (i, um+sk

1 ).

(v). Shown in Lemma 2.5.
Hence, the conditions (i)-(v) are satisfied and thus ψ is a reduction for 〈B;∆〉.
Moreover, for a given u ∈ F (B), the reduced represent ψ(u) can be determined in
a finite number of steps - according to its definition and since it can be done so for
the corresponding images of the mappings ψ0 and ψ′ respectively. Recall that ψ0

reduces the length (Proposition 1.2) and that ψ′ reduces the invariant ρ (Lemma
2.2-(1)). Therefore, ψ is a good reduction for 〈B;∆〉. An element u from F (B) is



REDUCTIONS FOR PRESENTATIONS OF (n, m)–SEMIGROUPS INDUCED BY . . . 55

reduced if and only if u ∈ B or u = (i, um+sk
1 ) where: ψ(uα) = uα, α ∈ Nm+sk;

there is no µ ∈ N0
sk such that uµ+β = (β,wm+rk

1 ) for each β ∈ Nm; and the
sequence um+sk

1 doesn’t consist a subsequence uλar
1uλ+r+1 such that ar

1 ∈ B+,
ϕ(ar

1) 6= ar
1 and uλ, uλ+r+1 6∈ B, where 1 ≤ r ≤ m + sk, 0 ≤ λ ≤ m + sk − r. ¤

Consider now a semigroup presentation 〈B; Λ〉 satisfying the conditions:
(I) d(x), d(z) > m and d(x) ≡ d(z) (modk) for all (x, z) ∈ Λ
(II) There exists a good reduction ϕ : B+ → B+ for 〈B; Λ〉.

In this case, d(ϕ(x)) ≡ d(x) (modk) for all x ∈ B+, since the dimensions of the
elements in the same class are equivalent modulo k. (Easy to show, applying
condition (I)). Thus, 〈B; Λ〉 satisfies the conditions (I’) & (II’) given at the be-
ginning. The converse is also true, i.e. if a semigroup presentation 〈B; Λ〉 satis-
fies the conditions (I’) & (II’), then d(x) ≡ d(z) (modk) for all (x, z) ∈ Λ (since
d(x) ≡ d(ϕ(x)) = d(ϕ(z) ≡ d(z) (modk)). Hence, (I) & (II) ⇐⇒ (I’) & (II’).
Our main result follows.

Theorem 2.1. Let 〈B; Λ〉 be a presentation of a binary semigroup satisfying:

(I) d(x), d(z) > m and d(x) ≡ d(z) (modk) for all (x, z) ∈ Λ

(II) There exists a good reduction ϕ for 〈B; Λ〉.
Let ∆ ⊆ F (B)× F (B) be the following set of (m + k,m)–defining relations

∆ =
{

(u, v) ∈ F (B)× F (B)
∣∣∣ u = (i, uλ

1ar
1u

m+sk
λ+r+1), v = (i, uλ

1bl
1u

m+sk
λ+r+1),

ar
1, b

l
1 ∈ B+ and ar

1 = bl
1 in 〈B; Λ〉,

uα ∈ F (B), α ∈ {1, . . . , λ} ∪ {λ + r + 1, . . . ,m + sk},
0 ≤ λ ≤ m + sk − r, 1 ≤ r ≤ m + sk, i ∈ Nm, s ≥ 1

}
.

Then a good reduction ψ for the (m+ k, m)–semigroup presentation 〈B;∆〉 can be
constructed. (Essentially ψ is induced by ϕ). ¤

Corollary 2.1.1. There exists a good (satisfactory) description of the correspond-
ing (m + k, m)–semigroup with presentation 〈B; ∆〉.
Proof. Since ψ is a good (effective) reduction for 〈B;∆〉, the statement follows
from Theorem 1.1 and from the fact that ψ(u), u ∈ F (B) can be calculated in a
finite number of steps. (See also [4], p.149–150). ¤

Corollary 2.1.2. There exists an explicit description of the congruence ∆.

Proof. Define a sequence ∆0,∆1, . . . , ∆p, . . . of (m + k, m)–relations on the sets
B0, B1, . . . , Bp, . . . respectively, by induction, as follows:

∆0 = {(b, b) | b ∈ B};

∆1 = ∆0

⋃{(
(i, am+sk

1 ), (i, bm+qk
1 )

) ∣∣∣ i ∈ Nm, s, q ≥ 1, am+sk
1 = bm+qk

1 in 〈B; Λ〉
}

;
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Assume that ∆p is defined on Bp and define ∆p+1 on Bp+1 by

∆p+1 = ∆p

⋃ {(
(i, um+sk

1 ), (i, vm+sk
1 )

) ∣∣∣ i ∈ Nm, s ≥ 1, uη∆pvη, η ∈ Nm+sk

}

⋃{(
(i, uα

1 ar
1u

m+sk−r
α+1 ), (i, vα

1 bl
1v

m+sk−r
α+1 )

) ∣∣∣ i ∈ Nm, s ≥ 1,

ar
1 = bl

1 in 〈B; Λ〉, uη∆pvη, η ∈ Nm+sk−r, α ∈ N0
m+sk−r

}

⋃ {(
(i, uα

1 (1, y) . . . (m, y)usk
α+1), (i, v

α
1 yvsk

α+1)
) ∣∣∣ i ∈ Nm,

s ≥ 1, (j, y) ∈ Bp, uη∆pvη, η ∈ Nsk, 0 ≤ α ≤ sk
}

⋃ {(
(i, uα

1 yusk
α+1), (i, v

α
1 (1, y) . . . (m, y)vsk

α+1)
) ∣∣∣ i ∈ Nm,

s ≥ 1, (j, y) ∈ Bp, uη∆pvη, η ∈ Nsk, 0 ≤ α ≤ sk
}

.

Let ∆∗ =
⋃

p≥0

∆p. Then, ∆ is the smallest transitive extension of ∆∗. (Easy to

verify, being ∆ = kerψ and having the standard description of ∆, see [4],§1). ¤
At the end, we consider one special case of Theorem 2.1.

Let 〈B; Λ′〉 be a presentation of a semigroup such that d(x), d(z) > m for all
(x, z) ∈ Λ′, let ϕ be a good reduction for 〈B; Λ′〉 and let k = 1.
Then, the conditions (I) & (II) from Theorem 2.1 are satisfied. Consequently,
〈B; Λ′〉 induces an (m + 1,m)–semigroup presentation 〈B;∆′〉 and ϕ induces a
good reduction ψ for 〈B;∆′〉. The set of the corresponding (m + 1,m)–defining
relations ∆′ is given by Theorem 2.1, taking k = 1.
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