REDUCTIONS FOR PRESENTATIONS OF (n, m)-SEMIGROUPS INDUCED BY REDUCTIONS FOR PRESENTATIONS OF BINARY SEMIGROUPS

DONČO DIMOVSKI AND IRENA STOJMENOVSKA

Abstract

The question of finding a satisfactory combinatorial description of an (n, m)-semigroup given with its (n, m)-presentation $\langle B ; \Delta\rangle$ can be answered by managing to construct a good reduction for the given $\langle B ; \Delta\rangle$ (if possible), which is usually quite complicated to achieve. Here, we construct good reductions for a class of (n, m)-presentations of (n, m)-semigroups that are induced by presentations of binary semigroups satisfying certain conditions. Namely, given a semigroup presentation $\langle B ; \Lambda\rangle$ with a good reduction φ that satisfy a pair of conditions, we define an associated (n, m)-semigroup presentation $\langle B ; \Delta\rangle$ and derive a good reduction ψ for $\langle B ; \Delta\rangle$. As a consequence, good description of the corresponding (n, m)-semigroup is obtained.

1. Introduction and preliminaries

Bellow we give some definitions, notations and facts on combinatorial semigroup theory and combinatorial (n, m)-semigroup theory. (For more details see [2], [4]).

Let B be a nonempty set and let \boldsymbol{B}^{+}be the free semigroup with basis B. $\boldsymbol{B}^{+}=\left(B^{+} ; \cdot\right)$ where B^{+}is the set of all finite (nonempty) sequences of the elements of B and ' \because ' is the concatenation of sequences. The element $\left(a_{1}, \ldots, a_{r}\right) \in B^{r} \subseteq B^{+}$ will be denoted simply by a_{1}^{r}, or by $\stackrel{r}{a}$ in the case when $a_{1}=\ldots=a_{r}=a$. Also, a_{i}^{j} will denote the sequence $a_{i} a_{i+1}, \ldots, a_{j}$ when $i \leq j$ or the empty sequence when $i>j$. Sometimes \underline{x} will be a short notation for a sequence of elements of a set B. As usual, d will be used to denote the dimension of a sequence $a_{1}^{r} \in B^{r}$ (i.e. $d\left(a_{1}^{r}\right)=r$), and \mathbb{N} will denote the set of all positive integers. By \mathbb{N}_{r} and \mathbb{N}_{r}^{0} we denote the sets $\{1,2, \ldots, \mathrm{r}\}$ and $\{0,1, \ldots, \mathrm{r}\}$ respectively, where $r \in \mathbb{N}$.

Let $\Lambda \subseteq B^{+} \times B^{+}$. The pair $\langle B ; \Lambda\rangle$ is a presentation of the semigroup $\boldsymbol{B}^{+} / \Lambda^{=}$ where $\Lambda^{=}$is the smallest congruence on \boldsymbol{B}^{+}containing Λ. We use the notation $\langle B ; \Lambda\rangle=\boldsymbol{B}^{+} / \Lambda^{=}$.

A reduction for $\langle B ; \Lambda\rangle$ is a mapping $\varphi: B^{+} \rightarrow B^{+}$satisfying the conditions:
(i) $\varphi(x u y)=\varphi(x \varphi(u) y), \quad$ (ii) $(u, v) \in \Lambda \Rightarrow \varphi(u)=\varphi(v), \quad$ (iii) $\varphi(u) \Lambda^{=} u$, for all $u, v \in B^{+}$and $x, y \in B^{*}$, where $B^{*}=B^{+} \cup\{1\}$ and 1 is a notation for the empty sequence.

[^0]Each reduction φ for $\langle B ; \Lambda\rangle$ is a homomorphism from \boldsymbol{B}^{+}to $\left(\varphi\left(B^{+}\right) ; \circ\right)$, where the operation ' \circ ' on $\varphi\left(B^{+}\right)$is defined by $u \circ v=\varphi(u v), u, v \in \varphi\left(B^{+}\right)$. Moreover, $\operatorname{ker} \varphi=\Lambda^{=}$and thus $\boldsymbol{B}^{+} / \Lambda^{=} \cong\left(\varphi\left(B^{+}\right) ; \circ\right)$ i.e. $\langle B ; \Lambda\rangle=\left(\varphi\left(B^{+}\right) ; \circ\right)$.

A reduction φ for $\langle B ; \Lambda\rangle$ is good (effective) reduction for $\langle B ; \Lambda\rangle$ if there exists an invariant $\rho: B^{+} \rightarrow \mathbb{N}$ such that $\varphi(x) \neq x$ implies $\rho(\varphi(x))<\rho(x)$ for all $x \in B^{+}$. In this case, for a given $u \in B^{+}$, the reduced represent $\varphi(u)$ can be determined in a finite number of steps. (As a consequence, the existence of an algorithm for the decidability i.e. solvability of the word problem is provided).

Let $Q \neq \emptyset, n, m \in \mathbb{N}$ and let $n-m=k \geq 1$. We will also assume that $m \geq 2$. A mapping $f: Q^{n} \rightarrow Q^{m}$ is an (n, m)-operation and the pair $\boldsymbol{Q}=(Q ; f)$ is called an (n, m)-groupoid. A mapping $f: \bigcup_{s \geq 1} Q^{m+s k} \rightarrow Q^{m}$ is called a poly- $(n, m)-$ operation and the pair $\boldsymbol{Q}=(Q ; f)$ is said to be a poly- (n, m)-groupoid.

An (n, m)-groupoid $\boldsymbol{Q}=(Q ; f)$ is an (n, m)-semigroup if

$$
f\left(f\left(x_{1}^{n}\right) x_{n+1}^{n+k}\right)=f\left(x_{1}^{i} f\left(x_{i+1}^{i+n}\right) x_{i+n+1}^{n+k}\right) \text { for all } x_{v} \in Q, i \in \mathbb{N}_{k} .
$$

A poly- (n, m)-groupoid $\boldsymbol{Q}=(Q ; f)$ is a poly- (n, m)-semigroup if

$$
f\left(x_{1}^{j} f\left(y_{1}^{m+r k}\right) x_{j+1}^{s k}\right)=f\left(x_{1}^{j} y_{1}^{m+r k} x_{j+1}^{s k}\right) \text { for all } x_{\lambda}, y_{\mu} \in Q, s, r \geq 1, j \in \mathbb{N}_{s k}^{0} .
$$

Remark. It is not necessary to make distinction between the notions of $(n, m)-$ semigroup and poly- (n, m)-semigroup due to the fact there is no essential difference between them, a consequence from the general associative law (GAL) which holds in all (n, m)-semigroups. (See [2], §5.) ${ }^{3}$
The notions of (n, m)-operations (poly- (n, m)-operations) are easily thought of as algebras with $m n$-ary (poly n-ary) operations

$$
f_{1}, \ldots, f_{m}: \bigcup_{s \geq 1} Q^{m+s k} \rightarrow Q, \text { where } f_{i}\left(x_{1}^{m+s k}\right) \stackrel{\text { def }}{=} z_{i} \Leftrightarrow f\left(x_{1}^{m+s k}\right)=z_{1}^{m}, i \in \mathbb{N}_{m}
$$

and $s=1$ for the (n, m)-case (i.e. $s \geq 1$ for the poly- (n, m)-case).
This allow us to translate all the notions which make sense for universal algebras to [poly-] n, m)-goupiods, without giving their explicit definitions.

Let $\boldsymbol{F}(\boldsymbol{B})=(F(B) ; f)$ be a free poly- (n, m)-groupoid with a basis B. We recall its construction. (See [2], §6).

$$
B_{-1}=\emptyset, \quad B_{0}=B, \quad B_{p+1}=B_{p} \cup\left(\mathbb{N}_{m} \times \bigcup_{s \geq 1} B_{p}^{m+s k}\right), \quad F(B)=\bigcup_{p \geq 0} B_{p}
$$

The poly- (n, m)-operation f on $F(B)$ is defined by

$$
f\left(u_{1}^{m+s k}\right)=v_{1}^{m} \Leftrightarrow\left(\forall i \in \mathbb{N}_{m}\right) v_{i}=\left(i, u_{1}^{m+s k}\right) .
$$

Hierarchy of the elements of $F(B)$ is a mapping $\chi: F(B) \rightarrow \mathbb{N}_{0}$ defined by
$\chi(u)=\min \left\{p \mid u \in B_{p}\right\}$. Clearly, $\chi(u)=p \Leftrightarrow u \in B_{p} \backslash B_{p-1}$.
Length on $F(B)$ is a mapping $|\mid: F(B) \rightarrow \mathbb{N}$ defined by induction on χ :
$|u|=1$ for $u \in B_{0},\left|\left(i, u_{1}^{m+s k}\right)\right|=\left|u_{1}\right|+\ldots+\left|u_{m+s k}\right|$ for $\left(i, u_{1}^{m+s k}\right) \in B_{p+1} \backslash B_{p}$.

[^1]Definition 1.1 ([4]). Let $\Delta \subseteq F(B) \times F(B) . \Delta$ is said to be a set of $(n, m)-$ defining relations on B and the pair $\langle B ; \Delta\rangle$ is a presentation of an (n, m)-semigroup.

Proposition $1.1([4]) .\langle B ; \Delta\rangle$ presents the factor (n, m)-semigroup $\boldsymbol{F}(\boldsymbol{B}) / \bar{\Delta}$ where $\bar{\Delta}$ is the least congruence on $\boldsymbol{F}(\boldsymbol{B})$ such that $\Delta \subseteq \bar{\Delta}$ and $\boldsymbol{F}(\boldsymbol{B}) / \bar{\Delta}$ is an (n, m)-semigroup. We use the notation $\langle B ; \Delta\rangle=\boldsymbol{F}(\boldsymbol{B}) / \bar{\Delta}$.
Definition 1.2 ([4]). Reduction for $\langle B ; \Delta\rangle$ is a mapping $\psi: F(B) \rightarrow F(B)$ with the following properties:
(i) $(u, v) \in \Delta \Rightarrow \psi(u)=\psi(v)$
(ii) $\psi\left(i, x^{\prime}(1, y)(2, y) \ldots(m, y) x^{\prime \prime}\right)=\psi\left(i, x^{\prime} y x^{\prime \prime}\right)$
(iii) $\psi\left(i, x^{\prime} w x^{\prime \prime}\right)=\psi\left(i, x^{\prime} \psi(w) x^{\prime \prime}\right)$
(iv) $u \bar{\Delta} \psi(u)$
(v) $\psi(\psi(u))=\psi(u)$,
for all $u, v, w,\left(i, x^{\prime} w x^{\prime \prime}\right),\left(i, x^{\prime}(1, y)(2, y) \ldots(m, y) x^{\prime \prime}\right) \in F(B)$ and $x^{\prime}, x^{\prime \prime} \in F(B)^{*}$.
Theorem $1.1([4])$. The reduction $\psi: F(B) \rightarrow F(B)$ for $\langle B ; \Delta\rangle$ is a homomorphism from $\boldsymbol{F}(\boldsymbol{B})$ to $(\psi(F(B)) ; g)$ where

$$
\begin{gathered}
\psi(F(B))=\{u \in F(B) \mid \psi(u)=u\} \text { and } \\
g\left(u_{1}^{m+s k}\right)=v_{1}^{m} \Leftrightarrow v_{i}=\psi\left(i, u_{1}^{m+s k}\right), i \in \mathbb{N}_{m}
\end{gathered}
$$

Moreover, ker $\psi=\bar{\Delta}$ and thus $\boldsymbol{F}(\boldsymbol{B}) / \bar{\Delta} \cong(\psi(F(B)) ; g)$ i.e. $\langle B ; \Delta\rangle=(\psi(F(B)) ; g)$.
If ψ is a reduction for $\langle B ; \Delta\rangle$ such that $\psi(u)$ can be determined in a finite number of steps for a given $u \in F(B)$, then ψ is said to be a good (effective) reduction for $\langle B ; \Delta\rangle$. (It provides the existence of an algorithm for calculating the reduced represent $\psi(u), u \in F(B))$.

In the case when $\Delta=\emptyset$, the pair $\langle B ; \emptyset\rangle$ presents the free (n, m)-semigroup with a basis B and $\langle B ; \emptyset\rangle=\boldsymbol{F}(\boldsymbol{B}) / \approx$, where \approx is the least congruence on $\boldsymbol{F}(\boldsymbol{B})$ such that $\boldsymbol{F}(\boldsymbol{B}) / \approx$ is an (n, m)-semigroup. We recall its combinatorial description from [3]. Let $\psi_{0}: F(B) \rightarrow F(B)$ be a mapping defined as follows:

$$
\psi_{0}(b)=b, b \in B
$$

Assume that $u=\left(i, u_{1}^{m+s k}\right) \in F(B)$ and that $\psi_{0}(v) \in F(B)$ is well defined for all $v \in F(B)$ such that $|v|<|u|$. Moreover, assume that $\psi_{0}(v) \neq v$ implies $\left|\psi_{0}(v)\right|<|v|$. Then, $v_{\lambda}=\psi_{0}\left(u_{\lambda}\right)$ is well defined for all $\lambda \in \mathbb{N}_{m+s k}$ and thus $v=\left(i, v_{1}^{m+s k}\right) \in F(B)$. If there exists a $\lambda^{\prime} \in \mathbb{N}_{m+s k}$ such that $v_{\lambda^{\prime}} \neq u_{\lambda^{\prime}}$ then $|v|<|u|$ and consequently define

$$
\psi_{0}(u)=\psi_{0}(v)
$$

If $v_{\lambda}=u_{\lambda}$ for all $\lambda \in \mathbb{N}_{m+s k}$ and if $u=\left(i, u_{1}^{j}\left(1, w_{1}^{m+r k}\right) \ldots\left(m, w_{1}^{m+r k}\right) u_{j+m+1}^{m+s k}\right)$ where $w_{1}^{m+r k} \in F(B)^{m+r k},(r \geq 1)$ and j is the smallest such index, define

$$
\psi_{0}(u)=\psi_{0}\left(i, u_{1}^{j} w_{1}^{m+r k} u_{j+m+1}^{m+s k}\right)
$$

If u doesn't satisfy any of the conditions above, $\psi_{0}(u) \stackrel{\text { def }}{=} u$.
The mapping ψ_{0} is well defined and it reduces the length, i.e. $\psi_{0}(u) \neq u$ implies $\left|\psi_{0}(u)\right|<|u|, u \in F(B)$.

Proposition 1.2 ([3]). The mapping ψ_{0} is a good reduction for $\langle B ; \emptyset\rangle$.
Remark 1.1: Note that the reduction ψ_{0} does not change the first coordinate nor decreases the dimension of the second coordinate when mapping elements from $F(B) \backslash B$. Also, ψ_{0} does not increase the hierarchy i.e. $\chi\left(\psi_{0}(u)\right) \leq \chi(u)$, $u \in F(B)$. (The proofs are by induction on $\left|\mid\right.$ and applying the definition of ψ_{0}.)

It is natural to look for a suitable combinatorial description of an $(n, m)-$ semigroup given with its (n, m)-presentation $\langle B ; \Delta\rangle$. Such description can be obtained if we manage to construct a good reduction for $\langle B ; \Delta\rangle$, a task which is not easy nor always possible to fulfill. Some examples, constructions and results on the issue are given in [4], [5], [6]. Bellow we define a class of presentations of (n,m)-semigroups $\langle B ; \Delta\rangle$ such that good reductions for $\langle B ; \Delta\rangle$ can be constructed. These $\langle B ; \Delta\rangle$ are induced by presentations of binary semigroups $\langle B ; \Lambda\rangle$ with good reductions φ satisfying a pair of conditions. Given such (n, m)-semigroup presentation $\langle B ; \Delta\rangle$, and using the good reduction φ for $\langle B ; \Lambda\rangle$, as well as the good reduction ψ_{0} for $\langle B ; \emptyset\rangle$, we will construct a good reduction ψ for $\langle B ; \Delta\rangle$.

2. Main part

Let $\langle B ; \Lambda\rangle$ be a semigroup presentation satisfying the conditions:
(I') $d(\underline{x}), d(\underline{z})>m$ for all $(\underline{x}, \underline{z}) \in \Lambda$
(II') There exists a good reduction $\varphi: B^{+} \rightarrow B^{+}$for $\langle B ; \Lambda\rangle$ such that $d(\varphi(\underline{x})) \equiv d(\underline{x})(\bmod k)$ for all $\underline{x} \in B^{+}$.
We define a set of (n, m)-defining relations $\Delta \subseteq F(B) \times F(B)$ by

$$
\begin{aligned}
\Delta=\{(u, v) \in F(B) \times F(B) \mid & u=\left(i, u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right), v=\left(i, u_{1}^{\lambda} b_{1}^{l} u_{\lambda+r+1}^{m+s k}\right), \\
& a_{1}^{r}, b_{1}^{l} \in B^{+} \text {and } a_{1}^{r}=b_{1}^{l} \text { in }\langle B ; \Lambda\rangle \\
& u_{\alpha} \in F(B), \alpha \in\{1, \ldots, \lambda\} \cup\{\lambda+r+1, \ldots, m+s k\}, \\
& \left.0 \leq \lambda \leq m+s k-r, 1 \leq r \leq m+s k, i \in \mathbb{N}_{m}, s \geq 1\right\} .
\end{aligned}
$$

Thus, we get a (n, m)-semigroup presentation $\langle B ; \Delta\rangle$ which is said to be induced by the semigroup presentation $\langle B ; \Lambda\rangle$.
Our aim is to construct a good reduction for $\langle B ; \Delta\rangle$. For that purpose, we will use the mapping ψ_{0} and the fact that there exists an invariant $\rho: B^{+} \rightarrow \mathbb{N}$ which is reduced by φ (since φ is a good reduction for $\langle B ; \Lambda\rangle$). We will extend such invariant ρ on $F(B)$ and then, using φ we will define an auxiliary mapping $\psi^{\prime}: F(B) \rightarrow F(B)$ which will reduce the extended invariant ρ. Afterwards, we will show and display the properties of the mapping ψ^{\prime} as well as some properties of compositions of ψ_{0} and ψ^{\prime}. Applying these results and the properties of the reduction ψ_{0} (see [3]), we will define an appropriate mapping $\psi: F(B) \rightarrow F(B)$ (by induction on hierarchy, combining ψ_{0} and ψ^{\prime}), and such ψ will be a good
reduction for $\langle B ; \Delta\rangle$. Let us now proceed to this construction.
Being φ a good reduction for $\langle B ; \Lambda\rangle$, there exists a mapping $\rho: B^{+} \rightarrow \mathbb{N}$ such that $\varphi(\underline{x}) \neq \underline{x}$ implies $\rho(\varphi(\underline{x}))<\rho(\underline{x})$, for all $\underline{x} \in B^{+}$. We will extend the invariant ρ on $F(B)$ and define a mapping

$$
\rho: F(B) \rightarrow \mathbb{N}_{0}, \text { by induction on } \chi \text { as follows: }
$$

For $b \in B, \rho(b)$ is already defined and since the condition (I') for $\langle B ; \Lambda\rangle$ implies that $\varphi(b)=b, b \in B$ (the elements from the basis are alone in the class), we can take $\rho(b)=1, b \in B$ (the usual way of defining ρ on the basis in such cases).
Next, for $\left(i, a_{1}^{m+s k}\right) \in B_{1} \backslash B_{0}$, define $\rho\left(i, a_{1}^{m+s k}\right)=\rho\left(a_{1}^{m+s k}\right)$; Assume that $\rho(v)$ is well defined for all $v \in B_{p}$ and extend the definition of ρ on B_{p}^{*} by induction on the dimension: We put $\rho(1)=0$, assume that ρ is well defined for all $\underline{x} \in B_{p}^{+}$with $d(\underline{x})<q,(q \in \mathbb{N})$ and let $x_{1}^{q} \in B_{p}^{+}$.
If $x_{1}^{q}=x_{1}^{\lambda} a_{1}^{r} x_{\lambda+r+1}^{q}$ where: $a_{1}^{r} \in B^{+}, 1 \leq r \leq q, x_{\lambda}, x_{\lambda+r+1} \notin B, 0 \leq \lambda \leq q-r$, and λ is the smallest such index, then $\rho\left(x_{1}^{\lambda}\right)$ and $\rho\left(x_{\lambda+r+1}^{q}\right)$ are well defined (by the hypothesis), and consequently define

$$
\rho\left(x_{1}^{q}\right)=\rho\left(x_{1}^{\lambda}\right)+\rho\left(a_{1}^{r}\right)+\rho\left(x_{\lambda+r+1}^{q}\right) .
$$

If x_{1}^{q} doesn't satisfy the conditions above, we put $\rho\left(x_{1}^{q}\right)=\sum_{j=1}^{q} \rho\left(x_{j}\right)$.
Now, for $u=\left(i, u_{1}^{m+s k}\right) \in B_{p+1} \backslash B_{p}$ we define $\rho\left(i, u_{1}^{m+s k}\right)=\rho\left(u_{1}^{m+s k}\right)$.
Lemma 2.1. $\rho\left(i, x_{1}^{\lambda} a_{1}^{r} x_{\lambda+r+1}^{m+s k}\right)=\rho\left(x_{1}^{\lambda}\right)+\rho\left(a_{1}^{r}\right)+\rho\left(x_{\lambda+r+1}^{m+s k}\right)$ where: $a_{1}^{r} \in B^{+}, 1 \leq r \leq m+s k, x_{\lambda}, x_{\lambda+r+1} \notin B, 0 \leq \lambda \leq m+s k-r$.
Proof. It is sufficient to show that $\rho\left(x_{1}^{\lambda} a_{1}^{r} x_{\lambda+r+1}^{q}\right)=\rho\left(x_{1}^{\lambda}\right)+\rho\left(a_{1}^{r}\right)+\rho\left(x_{\lambda+r+1}^{q}\right)$, where: $a_{1}^{r} \in B^{+}, x_{\lambda}, x_{\lambda+r+1} \notin B, 0 \leq \lambda \leq m+s k-r, 1 \leq r \leq m+s k$. Assume that the equality holds for all $\underline{x} \in F(B)^{+}$satisfying the conditions above and such that $d(\underline{x})<d\left(x_{1}^{\lambda} a_{1}^{r} x_{\lambda+r+1}^{m+s k}\right)=m+s k$. If λ is the smallest index such that $x_{\lambda} \notin B, a_{1}^{r} \in B^{+}$and $x_{\lambda+r+1} \notin B$, the case is trivial (follows by definition). Hence, let $x_{1}^{\lambda} a_{1}^{r} x_{\lambda+r+1}^{m+s k}=x_{1}^{j} b_{1}^{l} x_{j+l+1}^{\lambda} a_{1}^{r} x_{\lambda+r+1}^{m+s k}$ where: $b_{1}^{l} \in B^{+}, x_{j}, x_{j+l+1} \notin B$, $0 \leq j \leq \lambda-l-1,(1 \leq l \leq \lambda-1)$ and let j be the smallest such index. Then $\rho\left(x_{1}^{\lambda} a_{1}^{r} x_{\lambda+r+1}^{m+s k}\right)=\rho\left(x_{1}^{j} b_{1}^{l} x_{j+l+1}^{\lambda} a_{1}^{r} x_{\lambda+r+1}^{m+s k}\right)=\rho\left(x_{1}^{j}\right)+\rho\left(b_{1}^{l}\right)+\rho\left(x_{j+l+1}^{\lambda} a_{1}^{r} x_{\lambda+r+1}^{m+s k}\right)$ and $d\left(x_{j+l+1}^{\lambda} a_{1}^{r} x_{\lambda+r+1}^{m+s k}\right)=m+s k-j-l<m+s k$. Thus, $\rho\left(x_{1}^{\lambda} a_{1}^{r} x_{\lambda+r+1}^{m+s k}\right)=$ $\rho\left(x_{1}^{j}\right)+\rho\left(b_{1}^{l}\right)+\rho\left(x_{j+l+1}^{\lambda}\right)+\rho\left(a_{1}^{r}\right)+\rho\left(x_{\lambda+r+1}^{m+s k}\right)=\rho\left(x_{1}^{\lambda}\right)+\rho\left(a_{1}^{r}\right)+\rho\left(x_{\lambda+r+1}^{m+s k}\right)$.

Define a mapping $\psi^{\prime}: F(B) \rightarrow F(B)$ by induction on ρ as follows:

$$
\psi^{\prime}(b)=b, b \in B
$$

Let $u=\left(i, u_{1}^{m+s k}\right) \in F(B) \backslash B$, assume that ψ^{\prime} is well defined for all $v \in F(B)$ such that $\rho(v)<\rho(u)$ and moreover, assume that

$$
\psi^{\prime}(v) \neq v \text { implies } \rho\left(\psi^{\prime}(v)\right)<\rho(v)
$$

Let $u_{1}^{m+s k}=u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}$ where: $a_{1}^{r} \in B^{+}, 1 \leq r \leq m+s k, \varphi\left(a_{1}^{r}\right) \neq a_{1}^{r}$, $u_{\lambda}, u_{\lambda+r+1} \notin B, 0 \leq \lambda \leq m+s k-r$ and let λ (if exists) be the smallest such index. Then, $d\left(\varphi\left(a_{1}^{r}\right)\right)>m\left(\right.$ by $\left.\left(I^{\prime}\right)\right), d\left(\varphi\left(a_{1}^{r}\right)\right) \equiv d\left(a_{1}^{r}\right)(\bmod k)$ (by (II')), and thus
$\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right) \in F(B)$. Also, $\varphi\left(a_{1}^{r}\right) \neq a_{1}^{r}$ implies $\rho\left(\varphi\left(a_{1}^{r}\right)\right)<\rho\left(a_{1}^{r}\right)$, which implies that $\rho\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)<\rho(u)$. Consequently, define

$$
\psi^{\prime}(u)=\psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right) .
$$

Now, $\rho\left(\psi^{\prime}(u)\right)=\rho\left(\psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)\right) \leq \rho\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)<\rho(u)$ i.e. the mapping ψ^{\prime} is well defined in this case, and it reduces the invariant ρ.
If $u_{1}^{m+s k}$ doesn't satisfy the conditions above, we put

$$
\psi^{\prime}(u)=u
$$

Remark 2.1: Note that ψ^{\prime} does not change the first coordinate of $(i, \underline{x}) \in F(B) \backslash B$. Furthermore, $\chi\left(\psi^{\prime}(u)\right)=\chi(u), u \in F(B)$. (Easy to verify, by induction on ρ).
Lemma 2.2. (1) $\rho\left(\psi^{\prime}(u)\right) \leq \rho(u)$ and $\rho\left(\psi^{\prime}(u)\right)=\rho(u) \Leftrightarrow \psi^{\prime}(u)=u$
(2) $\psi^{\prime}\left(i, u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right)=\psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)$, where
$\left(i, u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right) \in F(B)$ and $a_{1}^{r} \in B^{+}, 1 \leq r \leq m+s k, 0 \leq \lambda \leq m+s k-r$.
(3) Let $\left(j, y_{1}^{m+s k}\right),\left(i, \underline{x} y_{1}^{m+s k} \underline{z}\right) \in F(B)$.

If $\psi^{\prime}\left(j, y_{1}^{m+s k}\right)=\left(j, y_{1}^{\prime m+l k}\right)$ then $\psi^{\prime}\left(i, \underline{x} y_{1}^{m+s k} \underline{z}\right)=\psi^{\prime}\left(i, \underline{x} y_{1}^{\prime m+l k} \underline{z}\right)$.
Proof. (1). Consequence from the fact that $\psi^{\prime}(u) \neq u$ implies $\rho\left(\psi^{\prime}(u)\right)<\rho(u)$ which is shown above, while defining ψ^{\prime}.
(2). Firstly, will show that $\psi^{\prime}\left(i, u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right)=\psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)$ for all $\left(i, u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right) \in F(B)$ where $a_{1}^{r} \in B^{+}(1 \leq r \leq m+s k)$ and $u_{\lambda}, u_{\lambda+r+1} \notin B$, $(0 \leq \lambda \leq m+s k-r)$. If $\varphi\left(a_{1}^{r}\right)=a_{1}^{r}$ the case is trivial, so let $\varphi\left(a_{1}^{r}\right) \neq a_{1}^{r}$ and assume that the equality stands for all $v \in F(B)$ with $\rho(v)<\rho\left(i, u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right)$. If λ is the smallest index such that $u_{\lambda}, u_{\lambda+r+1} \notin B$, the conclusion follows by definition. Let $u_{1}^{\lambda}=u_{1}^{j} b_{1}^{l} u_{j+l+1}^{\lambda}$ where: $b_{1}^{l} \in B^{+}, 1 \leq l \leq \lambda-1, \varphi\left(b_{1}^{l}\right) \neq b_{1}^{l}, u_{j}, u_{j+l+1} \notin B$, $0 \leq j \leq \lambda-l-1$, and assume that j is the smallest such index. Then

$$
\psi^{\prime}\left(i, u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right)=\psi^{\prime}\left(i, u_{1}^{j} b_{1}^{l} u_{j+l+1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right)=\psi^{\prime}\left(i, u_{1}^{j} \varphi\left(b_{1}^{l}\right) u_{j+l+1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right),
$$

and moreover, $\varphi\left(b_{1}^{l}\right) \neq b_{1}^{l}$ implies $\rho\left(\varphi\left(b_{1}^{l}\right)\right)<\rho\left(b_{1}^{l}\right)$, which implies that
$\rho\left(u_{1}^{j} \varphi\left(b_{1}^{l}\right) u_{j+l+1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right)<\rho\left(u_{1}^{j} b_{1}^{l} u_{j+l+1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right)=\rho\left(u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right)$. Thus,

$$
\begin{aligned}
& \psi^{\prime}\left(i, u_{1}^{j} \varphi\left(b_{1}^{l}\right) u_{j+l+1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right)=\psi^{\prime}\left(i, u_{1}^{j} \varphi\left(b_{1}^{l}\right) u_{j+l+1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)= \\
& \psi^{\prime}\left(i, u_{1}^{j} b_{1}^{l} u_{j+l+1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)=\psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right) .
\end{aligned}
$$

To show the proposition (2), first assume that there exist $\mu^{\prime} \in\{1, \ldots, \lambda\}$ and $\mu^{\prime \prime} \in\{\lambda+r+1, \ldots, m+s k\}$ such that $u_{\mu^{\prime}}, u_{\mu^{\prime \prime}} \notin B$. Moreover, let μ^{\prime} and $\mu^{\prime \prime}$ be the biggest and the smallest such index respectively. Then, $u_{1}^{\lambda}=u_{1}^{\mu^{\prime}} b_{1}^{l}$ where $b_{1}^{l} \in B^{+}$, $l=\lambda-\mu^{\prime} \geq 0$, and, $u_{\lambda+r+1}^{m+s k}=c_{1}^{q} u_{\mu^{\prime \prime}}^{m+s k}$ where $c_{1}^{q} \in B^{+}, q=\mu^{\prime \prime}-\lambda-r-1 \geq 0$. Now, using the equality from above, we get

$$
\begin{aligned}
& \psi^{\prime}\left(i, u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right)=\psi^{\prime}\left(i, u_{1}^{\mu^{\prime}} b_{1}^{l} a_{1}^{r} c_{1}^{q} u_{\mu^{\prime \prime}}^{m+s k}\right)=\psi^{\prime}\left(i, u_{1}^{\mu^{\prime}} \varphi\left(b_{1}^{l} a_{1}^{r} c_{1}^{q}\right) u_{\mu^{\prime \prime}}^{m+s k}\right)= \\
& \psi^{\prime}\left(i, u_{1}^{\mu^{\prime}} \varphi\left(b_{1}^{l} \varphi\left(a_{1}^{r}\right) c_{1}^{q}\right) u_{\mu^{\prime \prime}}^{m+s k}\right)=\psi^{\prime}\left(i, u_{1}^{\mu^{\prime}} b_{1}^{l} \varphi\left(a_{1}^{r}\right) c_{1}^{q} u_{\mu^{\prime \prime}}^{m+s k}\right)=\psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right) .
\end{aligned}
$$

If $u_{1}^{\lambda} \in B^{+}$or $u_{\lambda+r+1}^{m+s k} \in B^{+}$the proof is analogical. If $u_{1}^{m+s k} \in B^{+}$the statement follows from definition of ψ^{\prime} and the properties of the reduction φ.
(3). By induction on ρ. Assume that the proposition stands for all $v \in F(B)$ with $\rho(v)<\rho\left(j, y_{1}^{m+s k}\right)$ and let $\psi^{\prime}\left(j, y_{1}^{m+s k}\right)=\left(j, y_{1}^{\prime m+l k}\right) \neq\left(j, y_{1}^{m+s k}\right)$. Then $y_{1}^{m+s k}=y_{1}^{\lambda} a_{1}^{r} y_{\lambda+r+1}^{m+s k}$ for some $1 \leq r \leq m+s k$ and $0 \leq \lambda \leq m+s k-r$, where $a_{1}^{r} \in B^{+}, \varphi\left(a_{1}^{r}\right) \neq a_{1}^{r}$ and $y_{\lambda}, y_{\lambda+r+1} \notin B$. We can (but not need to) take λ to be the smallest such index. Now, $\psi^{\prime}\left(j, y_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) y_{\lambda+r+1}^{m+s k}\right)=\left(j, y_{1}^{\prime}{ }^{m+l k}\right)$ and we have that $\rho\left(j, y_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) y_{\lambda+r+1}^{m+s k}\right)<\rho\left(j, y_{1}^{m+s k}\right)$. Applying (2) and the inductive hypothesis for the element $\left(j, y_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) y_{\lambda+r+1}^{m+s k}\right)$, we obtain that $\psi^{\prime}\left(i, \underline{x} y_{1}^{m+s k} \underline{z}\right)=$ $\psi^{\prime}\left(i, \underline{x} y_{1}^{\lambda} a_{1}^{r} y_{\lambda+r+1}^{m+s k}\right)=\psi^{\prime}\left(i, \underline{x} y_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) y_{\lambda+r+1}^{m+s k} \underline{z}\right)=\psi^{\prime}\left(i, \underline{x} y_{1}^{\prime m+l k} \underline{z}\right)$.

Lemma 2.3. (1) If $(u, v) \in \Delta$ then $\psi^{\prime}(u)=\psi^{\prime}(v)$.
(2) If $\psi^{\prime}(u) \neq u$, there exist a sequence $u_{0}, u_{1}, \ldots, u_{t-1}, u_{t} \in F(B)$
such that $u=u_{0} \Delta u_{1} \Delta \ldots \Delta u_{t-1} \Delta u_{t}=\psi^{\prime}(u),(t \geq 1)$.
(3) $u \bar{\Delta} \psi^{\prime}(u), u \in F(B)$
(4) $\psi^{\prime}\left(\psi^{\prime}(u)\right)=\psi^{\prime}(u), u \in F(B)$.

Proof. (1). Consequence from (2) in Lemma 2.2.
(2). Let $u \in F(B)$ and let $\psi^{\prime}(u) \neq u$. Then $u=\left(i, u_{1}^{m+s k}\right) \in F(B) \backslash B$ and assume that the proposition stands for all $v \in F(B)$ with $\rho(v)<\rho(u)$. Since $\psi^{\prime}(u) \neq u$ we have that $\psi^{\prime}(u)=\psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)$ for some $a_{1}^{r} \in B^{+}$and $u_{\lambda}, u_{\lambda+r+1} \notin B$ where $\varphi\left(a_{1}^{r}\right) \neq a_{1}^{r}$, which implies that $\rho\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)<\rho(u)$. Also, $u=\left(i, u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right) \Delta\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)$.
If $\psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)=\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)$ we immediately get $u \Delta \psi^{\prime}(u)$.
If $\psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right) \neq\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)$, the hypothesis implies that there exists a sequence $u_{0}, u_{1}, \ldots, u_{t-1}, u_{t} \in F(B),(t \geq 1)$ such that

$$
\begin{aligned}
& \left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right) \Delta u_{1} \Delta \ldots \Delta u_{t-1} \Delta \psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right), \text { and thus } \\
& u \Delta\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right) \Delta u_{1} \Delta \ldots \Delta u_{t-1} \Delta \psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)=\psi^{\prime}(u) .
\end{aligned}
$$

(3). Direct consequence from (2).
(4). By induction on ρ. Clearly it holds on B, let $\left(i, u_{1}^{m+s k}\right) \in F(B) \backslash B$, and assume that $\psi^{\prime}\left(\psi^{\prime}(v)\right)=\psi^{\prime}(v)$ for all $v \in F(B)$ with $\rho(v)<\rho\left(i, u_{1}^{m+s k}\right)$. Let also $\psi^{\prime}\left(i, u_{1}^{m+s k}\right) \neq\left(i, u_{1}^{m+s k}\right)$. (Otherwise the equality is trivial). Then $\psi^{\prime}\left(i, u_{1}^{m+s k}\right)=$ $\psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)$ for some $a_{1}^{r} \in B^{+}$such that $\varphi\left(a_{1}^{r}\right) \neq a_{1}^{r}(1 \leq r \leq m+s k)$, and some $u_{\lambda}, u_{\lambda+r+1}$ such that $u_{\lambda}, u_{\lambda+r+1} \notin B,(0 \leq \lambda \leq m+s k-r)$. Moreover, $\rho\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)<\rho\left(i, u_{1}^{m+s k}\right)$ and by the hypothesis we get $\psi^{\prime}\left(\psi^{\prime}\left(i, u_{1}^{m+s k}\right)\right)=$ $\psi^{\prime}\left(\psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)\right)=\psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)=\psi^{\prime}\left(i, u_{1}^{m+s k}\right)$.
Lemma 2.4. (1) $\psi_{0} \psi^{\prime} \psi_{0}(u)=\psi^{\prime} \psi_{0}(u)$,
(2) $\psi^{\prime} \psi_{0} \psi^{\prime}(u)=\psi^{\prime} \psi_{0}(u), u \in F(B)$.

Proof. (1). We will show that $v \in \psi_{0}(F(B))$ implies $\psi^{\prime}(v) \in \psi_{0}(F(B))$. (By induction on ρ). Since it holds on B, let $v=\left(i, v_{1}^{m+s k}\right) \in \psi_{0}(F(B)) \backslash B$ and
assume that the statement holds for all $z \in \psi_{0}(F(B))$ with $\rho(z)<\rho\left(i, v_{1}^{m+s k}\right)$. Let also $\psi^{\prime}\left(i, v_{1}^{m+s k}\right) \neq\left(i, v_{1}^{m+s k}\right)$. Then, $\left(i, v_{1}^{m+s k}\right)=\left(i, v_{1}^{\lambda} a_{1}^{r} v_{\lambda+r+1}^{m+s k}\right)$ for some $1 \leq r \leq m+s k, 0 \leq \lambda \leq m+s k-r$, where: $a_{1}^{r} \in B^{+}, \varphi\left(a_{1}^{r}\right) \neq a_{1}^{r}, v_{\lambda}, v_{\lambda+r+1} \notin B$, $\rho\left(i, v_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) v_{\lambda+r+1}^{m+s k}\right)<\rho(v)$, and, $\psi^{\prime}(v)=\psi^{\prime}\left(i, v_{1}^{m+s k}\right)=\psi^{\prime}\left(i, v_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) v_{\lambda+r+1}^{m+s k}\right)$. Being $a_{1}^{r} \in B^{+}, \varphi\left(a_{1}^{r}\right) \in B^{+}$and $\left(i, v_{1}^{\lambda} a_{1}^{r} v_{\lambda+r+1}^{m+s k}\right) \in \psi_{0}(F(B))$, it is easy to conclude that $\left(i, v_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) v_{\lambda+r+1}^{m+s k}\right) \in \psi_{0}(F(B))$. Thus, and by the inductive hypothesis, we get that $\psi^{\prime}\left(i, v_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) v_{\lambda+r+1}^{m+s k}\right) \in \psi_{0}(F(B))$. Therefore, $\psi^{\prime}(v) \in \psi_{0}(F(B))$.
Consequently, $\psi^{\prime} \psi_{0}(u) \in \psi_{0}(F(B))$ for all $u \in F(B)$, and now (1) follows from $\psi_{0} \psi_{0}=\psi_{0}$ (Proposition 1.2).
(2). Let $u \in F(B)$ and let $\psi^{\prime}(u) \neq u$. (Otherwise the case is trivial). Then $u=\left(i, u_{1}^{m+s k}\right) \in F(B) \backslash B$ and $u_{1}^{m+s k}$ consists a subsequence $u_{\lambda} a_{1}^{r} u_{\lambda+r+1}$ such that $a_{1}^{r} \in B^{+}(1 \leq r \leq m+s k), \varphi\left(a_{1}^{r}\right) \neq a_{1}^{r}, u_{\lambda}, u_{\lambda+r+1} \notin B,(0 \leq \lambda \leq m+s k-$ $r)$ and, $\psi^{\prime}\left(i, u_{1}^{m+s k}\right)=\psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)$. Also, $\rho\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)<\rho(u)$. Assuming that the equality stands for all $v \in F(B)$ with $\rho(v)<\rho(u)$ we get

$$
\psi^{\prime} \psi_{0} \psi^{\prime}(u)=\psi^{\prime} \psi_{0} \psi^{\prime}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)=\psi^{\prime} \psi_{0}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)
$$

Consider the images $\psi_{0}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)$ and $\psi_{0}\left(i, u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right)$. Recall Remark 1.1 and assume that $\psi_{0}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)=\left(i, u_{1}^{\prime}{ }^{m+s_{0} k}\right)$. Since $\varphi\left(a_{1}^{r}\right) \in B^{+}$, there exists an integer $\lambda_{0} \geq \lambda$ such that $u_{\lambda_{0}+1}^{\prime} \ldots u_{\lambda_{0}+d\left(\varphi\left(a_{1}^{r}\right)\right)}^{\prime}=\varphi\left(a_{1}^{r}\right)$. (Easy to conclude, by induction on the length). Similarly, and being $a_{1}^{r} \in B^{+}$, we obtain that $\psi_{0}\left(i, u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right)=\left(i, u_{1}^{\prime} \ldots u_{\lambda_{0}}^{\prime} a_{1}^{r} u_{\lambda_{0}+d\left(\varphi\left(a_{1}^{r}\right)\right)+1}^{\prime} \ldots u_{m+s_{0} k}^{\prime}\right)$. Therefore,

$$
\begin{aligned}
& \psi^{\prime} \psi_{0}\left(i, u_{1}^{\lambda} \varphi\left(a_{1}^{r}\right) u_{\lambda+r+1}^{m+s k}\right)=\psi^{\prime}\left(i, u_{1}^{\prime} \ldots u_{\lambda_{0}}^{\prime} \varphi\left(a_{1}^{r}\right) u_{\lambda_{0}+d\left(\varphi\left(a_{1}^{r}\right)\right)+1}^{\prime} \ldots u_{m+s_{0} k}^{\prime}\right)= \\
& \psi^{\prime}\left(i, u_{1}^{\prime} \ldots u_{\lambda_{0}}^{\prime} a_{1}^{r} u_{\lambda_{0}+d\left(\varphi\left(a_{1}^{r}\right)\right)+1}^{\prime} \ldots u_{m+s_{0} k}^{\prime}\right)=\psi^{\prime} \psi_{0}\left(i, u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right)=\psi^{\prime} \psi_{0}(u)
\end{aligned}
$$

Hence, $\psi^{\prime} \psi_{0} \psi^{\prime}(u)=\psi^{\prime} \psi_{0}(u)$.
Define a mapping $\psi: F(B) \rightarrow F(B)$ by induction on χ as follows:

$$
\psi(b)=b, b \in B ;
$$

Let $u=\left(i, u_{1}^{m+s k}\right) \in F(B) \backslash B$ and assume that $\psi(v)$ is well defined for all $v \in F(B)$ such that $\chi(v)<\chi(u)$. Hence, $\psi\left(u_{\mu}\right)$ is well defined for all $\mu \in \mathbb{N}_{m+s k}$, and consequently define $\psi(u)$ by

$$
\psi\left(i, u_{1}^{m+s k}\right)=\psi^{\prime} \psi_{0}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{m+s k}\right)\right) .
$$

Lemma 2.5. (1) $\chi(\psi(u)) \leq \chi(u)$
(2) $\psi^{\prime}(\psi(u))=\psi(u)$
(3) $\psi_{0}(\psi(u))=\psi(u)$
(4) $\psi(\psi(u))=\psi(u)$, for all $u \in F(B)$.

Proof. (1). By induction on the hierarchy. $\chi(\psi(b))=\chi(b), b \in B$, assume that $\chi(\psi(v)) \leq \chi(v)$ for all $v \in B_{p}$ and let $u=\left(i, u_{1}^{m+s k}\right) \in B_{p+1} \backslash B_{p}$. Then,
$\chi\left(\psi\left(u_{\alpha}\right)\right) \leq \chi\left(u_{\alpha}\right), \alpha \in \mathbb{N}_{m+s k}$ and applying the properties of χ for the mappings ψ^{\prime} and ψ_{0} respectively (Remark 2.1 and Remark 1.1), we get

$$
\begin{aligned}
\chi\left(\psi\left(i, u_{1}^{m+s k}\right)\right) & =\chi\left(\psi^{\prime} \psi_{0}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{m+s k}\right)\right)\right)= \\
\chi\left(\psi_{0}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{m+s k}\right)\right)\right) & \leq \chi\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{m+s k}\right)\right) \leq \chi\left(i, u_{1}^{m+s k}\right) .
\end{aligned}
$$

(2). Consequence from (4) in Lemma 2.3.
(3). Consequence from (1) in Lemma 2.4.
(4). Firstly, we will show that all $u \in F(B) \backslash B$ satisfy

$$
\psi(u)=\left(i, w_{1}^{m+r k}\right) \text { where } i \in \mathbb{N}_{m} \text { and } w_{\eta} \in \psi(F(B)), \eta \in \mathbb{N}_{m+r k}
$$

By induction on χ. For $u \in B_{1} \backslash B, u=\left(i, a_{1}^{m+s k}\right)$ where $i \in \mathbb{N}_{m}$ and $a_{1}^{m+s k} \in B^{+}$. Hence, $\psi(u)=\psi^{\prime} \psi_{0}\left(i, a_{1}^{m+s k}\right)=\psi^{\prime}\left(i, a_{1}^{m+s k}\right)=\left(i, \varphi\left(a_{1}^{m+s k}\right)\right)$ and the conclusion follows immediately, being $B \subseteq \psi(F(B))$. Assume that the statement holds for all $u^{\prime} \in B_{p}$ and let $u \in B_{p+1} \backslash B_{p}$. Then, $u=\left(i, u_{1}^{m+s k}\right)$ for some $i \in \mathbb{N}_{m}$ and $u_{1}^{m+s k} \in B_{p}^{+}$, and $\psi(u)=\psi\left(i, u_{1}^{m+s k}\right)=\psi^{\prime} \psi_{0}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{m+s k}\right)\right)$. Recalling that none of the mappings ψ_{0} and ψ^{\prime} changes the first coordinate, assume that $\psi^{\prime} \psi_{0}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{m+s k}\right)\right)=\left(i, w_{1}^{m+r k}\right)$. Let also $\psi_{0}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{m+s k}\right)\right)=$ $\left(i, v_{1}^{m+l k}\right)$. We will show that $v_{\mu} \in \psi(F(B)), \mu \in \mathbb{N}_{m+l k}$:
If $\psi_{0}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{m+s k}\right)\right)=\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{m+s k}\right)\right)$ the conclusion is trivial. If $\psi_{0}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{m+s k}\right)\right) \neq\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{m+s k}\right)\right)$, then there exists $\vartheta \in \mathbb{N}_{s k}^{0}$ such that $\psi\left(u_{\vartheta+\beta}\right)=\left(\beta, y_{1}^{m+q k}\right), \beta \in \mathbb{N}_{m}\left(\right.$ since $\left.\psi_{0} \psi=\psi\right)$, and thus $\left(i, v_{1}^{m+l k}\right)=$ $\psi_{0}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{\vartheta}\right) y_{1}^{m+q k} \psi\left(u_{\vartheta+m+1}\right) \ldots \psi\left(u_{m+s k}\right)\right)$. Moreover, the hypothesis implies that $y_{j} \in \psi(F(B)), j \in \mathbb{N}_{m+q k}$. Consequently, if

$$
\begin{aligned}
& \psi_{0}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{\vartheta}\right) y_{1}^{m+q k} \psi\left(u_{\vartheta+m+1}\right) \ldots \psi\left(u_{m+s k}\right)\right)= \\
& \left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{\vartheta}\right) y_{1}^{m+q k} \psi\left(u_{\vartheta+m+1}\right) \ldots \psi\left(u_{m+s k}\right)\right),
\end{aligned}
$$

we immediately get $v_{\mu} \in \psi(F(B)), \mu \in \mathbb{N}_{m+l k}$. Otherwise, the conclusion follows by induction (i.e. repeating the same process).
Hence, we have that $\psi(u)=\left(i, w_{1}^{m+r k}\right)=\psi^{\prime}\left(i, v_{1}^{m+l k}\right)$, where $v_{\mu} \in \psi(F(B))$, $\mu \in \mathbb{N}_{m+l k}$. Thus, and being $B \subseteq \psi(F(B))$ it is easy to verify that $w_{\eta} \in \psi(F(B))$, $\eta \in \mathbb{N}_{m+r k}$. (Induction on ρ).

Let us now proof the statement (4). By induction on χ.
It is clear that $\psi \psi(b)=\psi(b), b \in B$, assume that $\psi \psi(z)=\psi(z)$ for all $z \in F(B)$ with $\chi(z) \leq p$, and let $\left(i, u_{1}^{m+s k}\right) \in B_{p+1} \backslash B_{p}$. We have showed that $\psi\left(i, u_{1}^{m+s k}\right)=$ $\left(i, w_{1}^{m+r k}\right)$ (for some $r \geq 1$) where $w_{\eta} \in \psi(F(B)), \eta \in \mathbb{N}_{m+r k}$ and thus $w_{\eta}=\psi\left(w_{\eta}^{\prime}\right)$ for some $w_{\eta}^{\prime} \in F(B), \eta \in \mathbb{N}_{m+r k}$. Furthermore, $\chi\left(w_{\eta}^{\prime}\right)<\chi\left(i, u_{1}^{m+s k}\right), \eta \in \mathbb{N}_{m+r k}$ and applying the hypothesis we get that $\psi \psi\left(w_{\eta}^{\prime}\right)=\psi\left(w_{\eta}^{\prime}\right)$, i.e. $\psi\left(w_{\eta}\right)=w_{\eta}$ for all $\eta \in \mathbb{N}_{m+r k}$. Thus, and by (2) and (3) (this lemma) we obtain

$$
\begin{aligned}
& \psi \psi\left(i, u_{1}^{m+s k}\right)=\psi\left(i, w_{1}^{m+r k}\right)=\psi^{\prime} \psi_{0}\left(i, \psi\left(w_{1}\right) \ldots \psi\left(w_{m+r k}\right)\right)= \\
& \psi^{\prime} \psi_{0}\left(i, w_{1}^{m+r k}\right)=\psi^{\prime} \psi_{0} \psi\left(i, u_{1}^{m+s k}\right)=\psi\left(i, u_{1}^{m+s k}\right) .
\end{aligned}
$$

Proposition 2.1. The mapping ψ is a good reduction for $\langle B ; \Delta\rangle$.
Proof. (i). Let $u \Delta v$, i.e. let $u=\left(i, u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right), v=\left(i, u_{1}^{\lambda} b_{1}^{l} u_{\lambda+r+1}^{m+s k}\right)$ where $a_{1}^{r}=b_{1}^{l}$ in $\langle B ; \Lambda\rangle, 0 \leq \lambda \leq m+s k-r, 1 \leq r \leq m+s k$. Then, $\varphi\left(a_{1}^{r}\right)=\varphi\left(b_{1}^{l}\right)$ and
by Lemma 2.4-(2) and Lemma 2.2-(2) we obtain

$$
\begin{aligned}
& \psi(u)=\psi^{\prime} \psi_{0}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{\lambda}\right) a_{1}^{r} \psi\left(u_{\lambda+r+1}\right) \ldots \psi\left(u_{m+s k}\right)\right)= \\
& \psi^{\prime} \psi_{0} \psi^{\prime}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{\lambda}\right) a_{1}^{r} \psi\left(u_{\lambda+r+1}\right) \ldots \psi\left(u_{m+s k}\right)\right)= \\
& \psi^{\prime} \psi_{0} \psi^{\prime}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{\lambda}\right) \varphi\left(a_{1}^{r}\right) \psi\left(u_{\lambda+r+1}\right) \ldots \psi\left(u_{m+s k}\right)\right)= \\
& \psi^{\prime} \psi_{0} \psi^{\prime}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{\lambda}\right) \varphi\left(b_{1}^{l}\right) \psi\left(u_{\lambda+r+1}\right) \ldots \psi\left(u_{m+s k}\right)\right)= \\
& \psi^{\prime} \psi_{0} \psi^{\prime}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{\lambda}\right) b_{1}^{l} \psi\left(u_{\lambda+r+1}\right) \ldots \psi\left(u_{m+s k}\right)\right)= \\
& \psi^{\prime} \psi_{0}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{\lambda}\right) b_{1}^{l} \psi\left(u_{\lambda+r+1}\right) \ldots \psi\left(u_{m+s k}\right)\right)=\psi(v) .
\end{aligned}
$$

(ii). Let $\left(i, x^{\prime}(1, y) \ldots(m, y) x^{\prime \prime}\right) \in F(B)$. Then

$$
\begin{aligned}
& \psi\left(i, x^{\prime}(1, y) \ldots(m, y) x^{\prime \prime}\right)=\psi^{\prime} \psi_{0}\left(i, \underline{\left.\psi\left(x^{\prime}\right) \psi(1, y) \ldots \psi(m, y) \underline{\psi\left(x^{\prime \prime}\right)}\right)=}\right. \\
& \psi^{\prime} \psi_{0}\left(i, \underline{\psi\left(x^{\prime}\right)} \psi^{\prime} \psi_{0}(1, \underline{\psi(y)}) \ldots \psi^{\prime} \psi_{0}(m, \underline{\psi(y)}) \underline{\psi\left(x^{\prime \prime}\right)}\right)
\end{aligned}
$$

where $\psi\left(x^{\prime}\right), \psi\left(x^{\prime \prime}\right)$ and $\psi(y)$ denote the sequences of the images by ψ of the elements in the sequences $\overline{x^{\prime}, x^{\prime \prime}}$ and y respectively.
Assume that $\psi_{0}(j, \psi(y))=\left(j, y^{0}\right)$ and that $\psi^{\prime}\left(j, y^{0}\right)=\left(j, y^{\prime}\right), j \in \mathbb{N}_{m}$. (Note that such assumptions are correct, according to Remark 1.1 and Remark 2.1). Applying (2) from Lemma 2.4, (3) from Lemma 2.2 and the properties of ψ_{0}, we get that

$$
\begin{aligned}
& \psi^{\prime} \psi_{0}\left(i, \underline{\psi\left(x^{\prime}\right)} \psi^{\prime} \psi_{0}(1, \underline{\psi(y)}) \ldots \psi^{\prime} \psi_{0}(m, \underline{\psi(y)}) \underline{\psi\left(x^{\prime \prime}\right)}\right)= \\
& \psi^{\prime} \psi_{0}\left(i, \underline{\psi\left(x^{\prime}\right)}\left(1, \underline{y^{\prime}}\right) \ldots\left(m, \underline{y^{\prime}}\right) \psi\left(x^{\prime \prime}\right)\right)= \\
& \psi^{\prime} \psi_{0}\left(i, \underline{\psi\left(x^{\prime}\right)} \underline{y^{\prime}} \frac{\left.\psi\left(x^{\prime \prime}\right)\right)}{}=\right. \\
& \psi^{\prime} \psi_{0} \psi^{\prime}\left(i, \underline{\psi\left(x^{\prime}\right)} \underline{y^{\prime}} \underline{\left.\psi\left(x^{\prime \prime}\right)\right)}=\right. \\
& \psi^{\prime} \psi_{0} \psi^{\prime}\left(i, \underline{\psi\left(x^{\prime}\right)} \underline{y^{0}} \underline{\psi\left(x^{\prime \prime}\right)}\right)= \\
& \psi^{\prime} \psi_{0}\left(i, \underline{\psi\left(x^{\prime}\right)} \underline{y^{0}} \underline{\left.\psi\left(x^{\prime \prime}\right)\right)}=\right. \\
& \psi^{\prime} \psi_{0}\left(i, \underline{\psi\left(x^{\prime}\right)}\left(1, \underline{\left.\left.y^{0}\right) \ldots\left(m, \underline{y^{0}}\right) \psi\left(x^{\prime \prime}\right)\right)=}\right.\right. \\
& \psi^{\prime} \psi_{0}\left(i, \underline{\psi\left(x^{\prime}\right)}\left(1, \underline{\left.\psi(y)) \ldots(m, \underline{\psi(y))}) \underline{\psi\left(x^{\prime \prime}\right)}\right)=}\right.\right. \\
& \psi^{\prime} \psi_{0}\left(i, \underline{\psi\left(x^{\prime}\right)} \underline{\psi(y)} \underline{\psi\left(x^{\prime \prime}\right)}\right)=\overline{\psi\left(i, x^{\prime} y x^{\prime \prime}\right) .}
\end{aligned}
$$

(iii). Follows from (4) in Lemma 2.5, applying the definition of ψ.
(iv). By induction on χ. If $u \in B$ then $\psi(u)=u \bar{\Delta} u$. Assume that $\psi(v) \bar{\Delta} v$ for all $v \in F(B)$ with $\chi(v) \leq p$, and let $u=\left(i, u_{1}^{m+s k}\right) \in B_{p+1} \backslash B_{p}$. Applying the hypothesis and the corresponding property for ψ^{\prime} and ψ_{0} respectively, we get

$$
\begin{aligned}
& \psi\left(i, u_{1}^{m+s k}\right)=\psi^{\prime} \psi_{0}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{m+s k}\right)\right) \bar{\Delta} \psi_{0}\left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{m+s k}\right)\right) \approx \\
& \left(i, \psi\left(u_{1}\right) \ldots \psi\left(u_{m+s k}\right)\right)=f_{i}\left(\psi\left(u_{1}\right) \ldots \psi\left(u_{m+s k}\right)\right) \bar{\Delta} f_{i}\left(u_{1}^{m+s k}\right)=\left(i, u_{1}^{m+s k}\right)
\end{aligned}
$$

(v). Shown in Lemma 2.5.

Hence, the conditions (i)-(v) are satisfied and thus ψ is a reduction for $\langle B ; \Delta\rangle$. Moreover, for a given $u \in F(B)$, the reduced represent $\psi(u)$ can be determined in a finite number of steps - according to its definition and since it can be done so for the corresponding images of the mappings ψ_{0} and ψ^{\prime} respectively. Recall that ψ_{0} reduces the length (Proposition 1.2) and that ψ^{\prime} reduces the invariant ρ (Lemma $2.2-(1))$. Therefore, ψ is a good reduction for $\langle B ; \Delta\rangle$. An element u from $F(B)$ is
reduced if and only if $u \in B$ or $u=\left(i, u_{1}^{m+s k}\right)$ where: $\psi\left(u_{\alpha}\right)=u_{\alpha}, \alpha \in \mathbb{N}_{m+s k}$; there is no $\mu \in \mathbb{N}_{s k}^{0}$ such that $u_{\mu+\beta}=\left(\beta, w_{1}^{m+r k}\right)$ for each $\beta \in \mathbb{N}_{m}$; and the sequence $u_{1}^{m+s k}$ doesn't consist a subsequence $u_{\lambda} a_{1}^{r} u_{\lambda+r+1}$ such that $a_{1}^{r} \in B^{+}$, $\varphi\left(a_{1}^{r}\right) \neq a_{1}^{r}$ and $u_{\lambda}, u_{\lambda+r+1} \notin B$, where $1 \leq r \leq m+s k, 0 \leq \lambda \leq m+s k-r$.

Consider now a semigroup presentation $\langle B ; \Lambda\rangle$ satisfying the conditions:
(I) $d(\underline{x}), d(\underline{z})>m$ and $d(\underline{x}) \equiv d(\underline{z})(\bmod k)$ for all $(\underline{x}, \underline{z}) \in \Lambda$
(II) There exists a good reduction $\varphi: B^{+} \rightarrow B^{+}$for $\langle B ; \Lambda\rangle$.

In this case, $d(\varphi(\underline{x})) \equiv d(\underline{x})(\bmod k)$ for all $\underline{x} \in B^{+}$, since the dimensions of the elements in the same class are equivalent modulo k. (Easy to show, applying condition (I)). Thus, $\langle B ; \Lambda\rangle$ satisfies the conditions (I') \& (II') given at the beginning. The converse is also true, i.e. if a semigroup presentation $\langle B ; \Lambda\rangle$ satisfies the conditions $\left(\mathrm{I}^{\prime}\right) \&\left(\mathrm{II}^{\prime}\right)$, then $d(\underline{x}) \equiv d(\underline{z})(\bmod k)$ for all $(\underline{x}, \underline{z}) \in \Lambda$ (since $d(\underline{x}) \equiv d(\varphi(\underline{x}))=d(\varphi(\underline{z}) \equiv d(\underline{z})(\bmod k))$. Hence, $(\mathrm{I}) \&(\mathrm{II}) \Longleftrightarrow\left(\mathrm{I}^{\prime}\right) \&\left(\mathrm{II}^{\prime}\right)$.
Our main result follows.
Theorem 2.1. Let $\langle B ; \Lambda\rangle$ be a presentation of a binary semigroup satisfying:
(I) $d(\underline{x}), d(\underline{z})>m$ and $d(\underline{x}) \equiv d(\underline{z})(\bmod k)$ for all $(\underline{x}, \underline{z}) \in \Lambda$
(II) There exists a good reduction φ for $\langle B ; \Lambda\rangle$.

Let $\Delta \subseteq F(B) \times F(B)$ be the following set of $(m+k, m)$-defining relations

$$
\begin{aligned}
\Delta=\{(u, v) \in F(B) \times F(B) \mid & u=\left(i, u_{1}^{\lambda} a_{1}^{r} u_{\lambda+r+1}^{m+s k}\right), v=\left(i, u_{1}^{\lambda} b_{1}^{l} u_{\lambda+r+1}^{m+s k}\right) \\
& a_{1}^{r}, b_{1}^{l} \in B^{+} \text {and } a_{1}^{r}=b_{1}^{l} \text { in }\langle B ; \Lambda\rangle \\
& u_{\alpha} \in F(B), \alpha \in\{1, \ldots, \lambda\} \cup\{\lambda+r+1, \ldots, m+s k\} \\
& \left.0 \leq \lambda \leq m+s k-r, 1 \leq r \leq m+s k, i \in \mathbb{N}_{m}, s \geq 1\right\}
\end{aligned}
$$

Then a good reduction ψ for the $(m+k, m)$-semigroup presentation $\langle B ; \Delta\rangle$ can be constructed. (Essentially ψ is induced by φ).
Corollary 2.1.1. There exists a good (satisfactory) description of the corresponding $(m+k, m)$-semigroup with presentation $\langle B ; \Delta\rangle$.

Proof. Since ψ is a good (effective) reduction for $\langle B ; \Delta\rangle$, the statement follows from Theorem 1.1 and from the fact that $\psi(u), u \in F(B)$ can be calculated in a finite number of steps. (See also [4], p.149-150).

Corollary 2.1.2. There exists an explicit description of the congruence $\bar{\Delta}$.
Proof. Define a sequence $\Delta_{0}, \Delta_{1}, \ldots, \Delta_{p}, \ldots$ of $(m+k, m)$-relations on the sets $B_{0}, B_{1}, \ldots, B_{p}, \ldots$ respectively, by induction, as follows:

$$
\Delta_{0}=\{(b, b) \mid b \in B\}
$$

$\Delta_{1}=\Delta_{0} \bigcup\left\{\left(\left(i, a_{1}^{m+s k}\right),\left(i, b_{1}^{m+q k}\right)\right) \mid i \in \mathbb{N}_{m}, s, q \geq 1, a_{1}^{m+s k}=b_{1}^{m+q k}\right.$ in $\left.\langle B ; \Lambda\rangle\right\} ;$

Assume that Δ_{p} is defined on B_{p} and define Δ_{p+1} on B_{p+1} by

$$
\begin{array}{r}
\Delta_{p+1}=\Delta_{p} \bigcup\left\{\left(\left(i, u_{1}^{m+s k}\right),\left(i, v_{1}^{m+s k}\right)\right) \mid i \in \mathbb{N}_{m}, s \geq 1, u_{\eta} \Delta_{p} v_{\eta}, \eta \in \mathbb{N}_{m+s k}\right\} \\
\bigcup\left\{\left(\left(i, u_{1}^{\alpha} a_{1}^{r} u_{\alpha+1}^{m+s k-r}\right),\left(i, v_{1}^{\alpha} b_{1}^{l} v_{\alpha+1}^{m+s k-r}\right)\right) \mid i \in \mathbb{N}_{m}, s \geq 1\right. \\
\left.a_{1}^{r}=b_{1}^{l} \operatorname{in}\langle B ; \Lambda\rangle, u_{\eta} \Delta_{p} v_{\eta}, \eta \in \mathbb{N}_{m+s k-r}, \alpha \in \mathbb{N}_{m+s k-r}^{0}\right\} \\
\bigcup\left\{\left(\left(i, u_{1}^{\alpha}(1, \underline{y}) \ldots(m, \underline{y}) u_{\alpha+1}^{s k}\right),\left(i, v_{1}^{\alpha} \underline{y} v_{\alpha+1}^{s k}\right)\right) \mid i \in \mathbb{N}_{m}\right. \\
\left.s \geq 1,(j, \underline{y}) \in B_{p}, u_{\eta} \Delta_{p} v_{\eta}, \eta \in \mathbb{N}_{s k}, 0 \leq \alpha \leq s k\right\} \\
\bigcup\left\{\left(\left(i, u_{1}^{\alpha} \underline{y} u_{\alpha+1}^{s k}\right),\left(i, v_{1}^{\alpha}(1, \underline{y}) \ldots(m, \underline{y}) v_{\alpha+1}^{s k}\right)\right) \mid i \in \mathbb{N}_{m}\right. \\
\left.s \geq 1,(j, \underline{y}) \in B_{p}, u_{\eta} \Delta_{p} v_{\eta}, \eta \in \mathbb{N}_{s k}, 0 \leq \alpha \leq s k\right\}
\end{array}
$$

Let $\Delta_{*}=\bigcup_{p \geq 0} \Delta_{p}$. Then, $\bar{\Delta}$ is the smallest transitive extension of Δ_{*}. (Easy to verify, being $\bar{\Delta}=\operatorname{ker} \psi$ and having the standard description of $\bar{\Delta}$, see $[4], \S 1)$.

At the end, we consider one special case of Theorem 2.1.
Let $\left\langle B ; \Lambda^{\prime}\right\rangle$ be a presentation of a semigroup such that $d(\underline{x}), d(\underline{z})>m$ for all $(\underline{x}, \underline{z}) \in \Lambda^{\prime}$, let φ be a good reduction for $\left\langle B ; \Lambda^{\prime}\right\rangle$ and let $k=1$.
Then, the conditions (I) \& (II) from Theorem 2.1 are satisfied. Consequently, $\left\langle B ; \Lambda^{\prime}\right\rangle$ induces an $(m+1, m)$-semigroup presentation $\left\langle B ; \Delta^{\prime}\right\rangle$ and φ induces a good reduction ψ for $\left\langle B ; \Delta^{\prime}\right\rangle$. The set of the corresponding $(m+1, m)$-defining relations Δ^{\prime} is given by Theorem 2.1, taking $k=1$.

References

[1] Ǵ. Čupona, Vector valued semigroups, Semigroup Forum 26 (1983), 65-74.
[2] Ǵ. Čupona, N. Celakoski, S. Markovski, D. Dimovski, Vector valued groupods, semigroups and groups, in: B. Popov, Ǵ. Čupona, N. Celakoski (ed), Vector valued semigroups and groups, Maced. Acad. of Sci. and Arts, Skopje, 1988, 1-79.
[3] D. Dimovski, Free vector valued semigroups, Proc. Conf. Algebra \& Logic (Cetinje, 1985), 55-62.
[4] Ǵ. Čupona, S. Markovski, D. Dimovski, B. Janeva, Introduction to the combinatorial theory of vector valued semigroups, in: B. Popov, Ǵ. Čupona, N. Celakoski (ed), Vector valued semigroups and groups, Maced. Acad. of Sci. and Arts, Skopje, 1988, 41-184.
[5] D. Dimovski, G. Čupona, Injective vector valued semigroups, Proc. VIII Int. Conf. Algebra \& Logic (Novi Sad 1998), Novi Sad J. Math, Vol.29, No. 3 (1999), 151-163.
[6] V. Miovska, Vector valued bands, PhD thesis (in Macedonian), Ss. Cyril and Methodius University - Skopje, 2008.

Institute of Mathematics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, P.O.Box 162, 1000 Skopje, Republic of Macedonia
E-mail address: donco@iunona.pmf.ukim.edu.mk
Orce Nikolov 96, 1000 Skopje, Republic of Macedonia
E-mail address: irena.stojmenovska@gmail.com

[^0]: 2000 Mathematics Subject Classification. 20M05; 20M10.
 Key words and phrases. (n, m)-semigroup, (n, m)-presentation, (n, m)-reduction.

[^1]: ${ }^{3}$ However, there is a justified reason for introducing poly- (n, m)-semigroups in the combinatorial (n, m)-semigroup theory (see [2], §6).

