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SOME BLOCK DESIGNS CONSTRUCTED FROM
RESOLVABLE DESIGNS

DEAN CRNKOVIĆ∗

Abstract. LetD be a resolvable 2−(v, k, λ) design, andD′ be a 2−(v′, k′, λ′)
design, such that v′ = v

k
. Further, let r and r′ be replication numbers of a

point in D and D′, respectively. Shrikhande and Raghavarao proved that
then there exists a 2 − (v′′, k′′, λ′′) design D′′, such that v′′ = v, k′′ = kk′

and λ′′ = r′λ + (r − λ)λ′. If D′ is resolvable, then D′′ is also resolvable.
Applying this result, we construct block designs from some series of designs.
Further, we discuss a construction of resolvable 3-designs.

1. Introduction

0

A t-(v, k, λ) design is a finite incidence structure (P,B, I), where P and B are
disjoint sets and I ⊆ P × B, with the following properties:

1.: |P| = v;
2.: every element of B is incident with exactly k elements of P;
3.: every t elements of P is incident with exactly λ elements of B.

Elements of the set P are called points and elements of the set B are called blocks.
2-designs are often called block designs. If |P| = |B| then the block design is
called symmetric. A symmetric 2 − (v, k, 1) design is called a projective plane.

In a 2-(v, k, λ) design every point is incident with exactly r =
λ(v − 1)
k − 1

blocks

(see [1, Theorem 2.10 p. 10]), and r is called the replication number of a design.
The number r − λ is called the order of a 2− (v, k, λ) design. If a block design is
symmetric, then r = k.

A parallel class or resolution class in a design is a set of blocks that partition
the point set. A resolvable block design is a block design whose blocks can be
partitioned into parallel classes. Resolvable block designs are frequently used in
design of experiments, especially when the entire experiment can not be completed
at one time or when there is a risk that the experiment may be prematurely
terminated.
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In this paper we present a construction of block designs from resolvable designs,
based on a result of Shrikhande and Raghavarao [7]. In some cases constructed
designs are also resolvable. Further, we discuss a construction of resolvable 3-
designs.

2. Construction of 2-designs

We prove the following theorem, based on a construction by Shrikhande and
Raghavarao (see [7]):

Theorem 1. Let D be a resolvable 2− (v, k, λ) design, and D′ be a 2− (v′, k′, λ′)
design, such that v′ = v

k . Further, let r and r′ be replication numbers of a point in
D and D′, respectively. Then there exists a 2 − (v′′, k′′, λ′′) design D′′, such that
v′′ = v, k′′ = kk′ and λ′′ = r′λ + (r − λ)λ′. If D′ is resolvable, then D′′ is also
resolvable.

Proof. Let D be a resolvable block design (P,B, I), and

B = {xi,j | 1 ≤ i ≤ r, 1 ≤ j ≤ v′},
where xi,j is the jth block in the ith parallel class. Further, let D′ be a block
design (P ′,B′, I ′) and B′ = {x′1, . . . , x′b′}. Blocks of D′, given as sets of points, are
x′j = {Pj1 , . . . , Pjk′}, j = 1, . . . , b′. Let the set of points of D′′ be P, the same as
for the design D. From each parallel class of the design D we construct b′ blocks
of D′′. From ith parallel class we obtain the following blocks of D′′:

x′′i,j = xi,j1 ∪ xi,j2 ∪ . . . ∪ xi,jk′ , j = 1, . . . , b′.

Clearly, the number of points of D′′ is v, and each block from D′′ consists of kk′

points. Two points P1 and P2 from P are incident with λ block of the design D,
and each block of D is a subset of r′ blocks of D′′. That gives us r′λ blocks of D′′
that contain P1 and P2. Further, the point P1 lies on r − λ blocks of D that do
not contain P2, hence in r − λ parallel classes of D points P1 and P2 belong to
different blocks. Two blocks form a parallel class of D lie in λ′ blocks of D′′. That
gives us further (r − λ)λ′ blocks of D′′ that contain P1 and P2. Therefore, there
are r′λ + (r − λ)λ′ blocks from D′′ incident with both P1 and P2.

If D′ is a resolvable design, then the definition of blocks of D′′ shows that each
parallel class of D′ induces a parallel class of D′′. ¤
Remark 2.1: If b and b′ are numbers of blocks in the designs D and D′, respec-
tively, then r′′ = rr′ is replication number of the design D′′ and b′′ = b r′

k′ = bb′
v′ =

rb′ is the number of blocks in D′′.
Note that the design D′′ can have repeated blocks.

Theorem 2. Let D be a resolvable 2− (v, k, 1) design, and D′ be a 2− (v′, k′, λ′)
design, such that v′ = v

k . Further, let D′′ be a 2 − (v′′, k′′, λ′′) design constructed
as described in Theorem 1. If k′ < k, then D′′ is a block design without repeated
blocks.

Proof. Two blocks from D intersect in at most one point, hence two blocks from
the design D′′ intersect in at most (k′)2 points. ¤
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Remark 2.2: Let D be a resolvable 2 − (v, k, λ) design with replication number
r, and D′1, . . . ,D′r be 2− (v′, k′, λ′) designs with replication number r′, and v′ = v

k .
Let the blocks of D′i be x′ij = {Pij1

, . . . , Pij
k′
}, j = 1, . . . , b′. Similarly as in

the proof of Theorem 1, we can construct a block design D′′ with parameters
(v, kk′, r′λ+(r−λ)λ′) in such a way that from ith parallel class of D we construct
the following blocks of D′′:

x′′i,j = xi,ij1
∪ xi,ij2

∪ . . . ∪ xi,ij
k′

, j = 1, . . . , b′.

In that way, taking different block designs D′1, . . . ,D′r, one can construct mutually
non-isomorphic 2 − (v, kk′, r′λ + (r − λ)λ′) designs. Even interchanging a design
D′k from the set {D′1, . . . ,D′r} with a design D′k isomorphic to D′k, we can produce
non-isomorphic 2− (v, kk′, r′λ + (r − λ)λ′) designs.

In sections 3, 4 and 5 we apply Theorem 1 to construct block designs from some
well-known series of designs.

3. Some 2-designs with k = 9

It is well-known that a (v, 3, 1) design, so called Steiner triple system, exists if
and only if v ≡ 1, 3 (mod 6). Ray-Chaudhuri and Wilson proved the existence for
resolvable (v, 3, 1) designs for every v ≡ 3 (mod 6) (see [6]). Further, Hanani, Ray-
Chaudhuri and Wilson in [3] proved the existence for resolvable (v, 4, 1) designs
for every v ≡ 4 (mod 12).

Corollary 2.1. Let v = 18t + 3, where t is a positive integer. Then there exists a
2− (v, 9, 12t) design.

Proof. Since v ≡ 3 (mod 6) and v′ = v
3 = 6t + 1 ≡ 1 (mod 6), there exist a

2− (v′, 3, 1) design, and a resolvable 2− (v, 3, 1) design. Replication number of a
resolvable 2− (v, 3, 1) design is r = 9t+1, and replication number of a 2− (v′, 3, 1)
design is r′ = 3t. Theorem 1 implies that there exists a 2− (v, 9, λ′′) design, where
λ′′ = 3t + 9t = 12t. ¤

Corollary 2.2. Let v = 18t + 9, where t is a positive integer. Then there exists a
resolvable 2− (v, 9, 12t + 7) design.

Proof. Since v ≡ 3 (mod 6) and v′ = v
3 = 6t+3 ≡ 3 (mod 6), there exist resolvable

designs with parameters 2 − (v, 3, 1) and 2 − (v′, 3, 1). Replication number of a
resolvable 2− (v, 3, 1) design is r = 9t + 7, and replication number of a resolvable
2− (v′, 3, 1) design is r′ = 3t + 1. Theorem 1 leads us to the conclusion that there
exists a 2− (v, 9, λ′′) design, where λ′′ = 3t + 1 + 9t + 6 = 12t + 7. ¤

4. Some examples related to 1-factorization

Let S be a set, r = 2n an even number and |S| = r. Then there exist r − 1
partitions of S into 2-subsets, such that every pair of partitions is disjoint. In
other words, there exists a 1-factorization of K2n for all n. That means that for
all positive integer n there is a resolvable 2 − (2n, 2, 1) design. Blocks of this
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resolvable design are all 2-subsets of the set of points, and replication number is
2n− 1.

Corollary 2.3. Let v = 24t− 8, where t is a positive integer. Then there exists a
resolvable 2− (v, 8, 14t− 7) design.

Proof. Obviously, v ≡ 4 (mod 12), hence there exists a resolvable 2−(v, 4, 1) design
with replication number r = 8t−3. Since v′ = v

4 = 6t−2 is an even number, there
is a resolvable 2− (v′, 2, 1) design with replication number r′ = v′ − 1. Therefore,
there exists a resolvable 2− (v, 8, 14t− 7) design. ¤
Corollary 2.4. Let v = 24t + 8, where t is a positive integer. Then there exists a
resolvable 2− (v, 8, 28t + 7) design.

Proof. Since v is even, there is a resolvable 2 − (v, 2, 1) design with replication
number r = v−1. The number of blocks in a parallel class is v′ = v

2 = 12t+4, and
therefore there exists a resolvable 2-design with parameters (v′, 4, 1) and replication
number r′ = 4t + 1. That impies the existence of a resolvable 2 − (v, 8, 28t + 7)
design. ¤
Corollary 2.5. Let v = 12t + 6, where t is a positive integer. Then there exists a
resolvable 2− (v, 6, 15t + 5) design.

Proof. Since v is even, there is a resolvable 2 − (v, 2, 1) design with replication
number r = v − 1 = 12t + 5. The number of blocks in one parallel class is
v′ = v

2 = 6t + 3, and therefore there exists a resolvable Steiner triple system on
v′ points, i.e. a resolvable 2-design with parameters (6t + 3, 3, 1). Replication
number of that resolvable Steiner triple system is r′ = 3t + 1. Therefore, there
exists a resolvable 2-design with parameters (v, 6, 15t + 5) ¤
Corollary 2.6. Let v = 12t + 2, where t is a positive integer. Then there exists a
2− (v, 6, 15t) design.

Proof. The number v is even, hence there is a resolvable 2 − (v, 2, 1) design with
replication number r = v − 1 = 12t + 1. The number of blocks in each parallel
class is v′ = v

2 = 6t + 1, so there exists a Steiner triple system (6t + 1, 3, 1), with
replication number r′ = 3t. It follows from Theorem 1 that there exists a 2-design
with parameters (v, 6, 15t) ¤

5. Examples related to projective planes

It is well known that a symmetric (n2 +n+1, n+1, 1) design, e.g. a projective
plane of order n, exists for every prime power n.

Corollary 2.7. Let n be a prime power. Then there exists a block design with
parameters (3n2 + 3n + 3, 3n + 3, 3n2+n

2 + n + 1).

Proof. Since n2 + n is even, 3n2 + 3n + 3 ≡ 3 (mod 6). Therefore, there exists a
resolvable 2− (3n2 + 3n + 3, 3, 1) design. Replication number of that block design
is r = 3n2+n

2 + 1. Applying Theorem 1 to a resolvable 2 − (3n2 + 3n + 3, 3, 1)
design and a projective plane of order n, i.e. a block design with parameters
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(n2 + n + 1, n + 1, 1), we get that there exists a block design with parameters
(3n2 + 3n + 3, 3n + 3, 3n2+n

2 + n + 1). ¤

Corollary 2.8. For every positive integer t there exists a block design with pa-
rameters (4 · 32t + 4 · 3t + 4, 4 · 3t + 4, 4 · 32t−1 + 3t + 4 · 3t−1 + 1).

Proof. Because 4 · 32t +4 · 3t +4 ≡ 4 (mod 12) there is a resolvable 2− (4 · 32t +4 ·
3t +4, 4, 1) design, with replication number r = 4 ·32t−1+4 ·3t−1+1. This fact and
the existence of a symmetric block design with parameters (32t + 3t + 1, 3t + 1, 1)
proves the statement. ¤

Corollary 2.9. Let n be a prime power. Then there exists a block design with
parameters (2n2 + 2n + 2, 2n + 2, 2n2 + 3n + 1).

Proof. 2n2 +2n+2 is an even number, so there exists a resolvable 2− (2n2 +2n+
2, 2, 1) design with replication number r = 2n2 + 2n + 1. Further, there exists a
symmetric (n2 +n+1, n+1, 1) design, hence there exists a 2− (2n2 +2n+2, 2n+
2, 2n2 + 3n + 1) design. ¤

Remark 5.1: Naturally, one can apply Theorem 1 to some other block designs,
for example to the following series of designs:

• A resolvable (v, 3, 2) design exists if and only if v ≡ 0, 1 (mod 6) and v 6= 6
(see [2]).

• An affine plane of order n is a block design of the form (n2, n, 1). An affine
plane of order n exists if and only if a projective plane of order n exists.

• There exist quasi-residual nonresolvable 2-(3n7, 3n−17, (3n−17− 1)/2) de-
signs, for n ≥ 2 (see [8]).

6. Construction of 3-designs

Let D be a t − (v, k, λt) design and let s < t be a positive integer. Then D is
also an s− (v, k, λs) design, where

λs = λt

(
v−s
t−s

)
(
k−s
t−s

) .

Theorem 3. Let D be a resolvable 3− (v, k, λ3) design, and D′ be a 3− (v′, k′, λ′3)
design, such that v′ = v

k . Further, let r and r′ be replication numbers of a point in
D and D′, respectively. Then there exists a 3 − (v′′, k′′, λ′′3) design D′′, such that
v′′ = v, k′′ = kk′ and λ′′3 = λ3r

′ + 3(λ2 − λ3)λ′2 + (r − λ3 − 3(λ2 − λ3))λ′3. If D′
is resolvable, then D′′ is also resolvable.

Proof. Let us construct a design D′′ as described in Teorem 1, and let P1, P2 and
P3 be pairwise distinct points of the design D. We have to show that there are
λ3r

′ + 3(λ2 − λ3)λ′2 + (r− λ3 − 3(λ2 − λ3))λ′3 blocks of D′′ that are incident with
P1, P2 and P3.

Points P1, P2 and P3 are incident with λ3 block of the design D, and each block
of D is a subset of r′ blocks of D′′. That gives us λ3r

′ blocks of D′′ that contain
P1, P2 and P3.
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There are (λ2−λ3) blocks of D containing two points from the set {P1, P2, P3},
and not containg the third point from that set. Since there are λ′2 blocks of D′′
that contain each pair of blocks of D, that gives us further 3(λ2 − λ3)λ′2 blocks of
D′′ that are incident with P1, P2 and P3.

Finally, there are (r − λ3 − 3(λ2 − λ3)) blocks of D that are incident with
exactly one point from the set {P1, P2, P3}, and three blocks of D are contained
in λ′3 blocks of D′′. That gives us additional (r− λ3 − 3(λ2 − λ3))λ′3 blocks of D′′
that are incident with P1, P2 and P3, and completes the proof. ¤

It is shown in [4] and [5] that a resolvable 3− (v, 4, 1) design exists if and only
if v ≡ 4, 8 (mod 12).

Corollary 3.1. Let v = 48t + 16, where t is a positive integer. Then there exists
a resolvable 3− (v, 16, 408t2 + 242t + 35) design.

Proof. Obviously, v ≡ 4 (mod 12), hence there exists a resolvable 3−(v, 4, 1) design
with replication number r = 384t2 + 232t + 35 and every pair of points of that
design is incident with λ2 = 24t + 7. Since v′ = v

4 = 12t + 4, there is a resolvable
3 − (v′, 4, 1) design with replication number r′ = 24t2 + 10t + 1 and λ′2 = 6t + 1.
Therefore, there exists a resolvable 3− (v, 16, 408t2 + 242t + 35) design. ¤
Corollary 3.2. Let v = 48t− 16, where t is a positive integer. Then there exists
a resolvable 3− (v, 16, 408t2 − 302t + 55) design.

Proof. Since v ≡ 8 (mod 12), there exists a resolvable 3 − (v, 4, 1) design with
replication number r = 384t2−280t+51 and λ2 = 24t−9. Further, v′ = v

4 = 12t−4
so there is a resolvable 3−(v′, 4, 1) design with replication number r′ = 24t2−22t+5
and λ′2 = 6t− 3. Therefore, there exists a resolvable 3− (v, 16, λ′′3) design, where
λ′′3 = 408t2 − 302t + 55. ¤
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