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ON SOME CLASSICAL INEQUALITIES IN UNITARY SPACES

Josip E. Pecarié

Abstract. In this paper we shall give some remarks about
some classical inequalities in unitary spaces. In the first sec-
tion we shall consider some inequalities which are in connectior
to the Buniakowsky-Cauchy-Schwarz inequality, in the second to
the Bessel inequality, and in the third to the Clarkson inequa-
lity.

1. On some inequalities related to the Buniakowsky-Cauchy-

Schwarz inequality

S. Kurepa [1] proved the following two results:

Theorem A. Let X be a real Hilbert space and xc the complex
fication of X. Then for any couple of vectors a€X and zexC the
following inequality holds:

l(z,a) |2 < lal2(5lz12 + 31z, 20| slal?|z|? (1)
where z denotes the conjugate vector of z.

Theorem B. Let X be a real Hilbert space and e a unit vec-
tor in X, suppose that a,bé€X are given vectors such that

(u?-lay|2) + (v3-|b,[%) 20 (2)
where u=(a,e), v=(b,e), a,=a-ue, b,=b-ve.
Then the following inequality holds:
(u?-la, | 2) (v3=|b,|2) 5 (uv-(a,,b,))2. (3

If a and b are independent vectors and in (2) the strict inequa-
lity holds, then also in (3) strict inequality holds.

Here we shall give some related results.

our first result is an extension of a result from (2],
and it is related to (1).
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Theorem 1. Let X be a real unitary space and £,g,h€X. Then

-Hel*dgllnl-(g,n)) s (£,90(8,m < 3lel* dgllnl+@nn. (0

proof. If g and h#0 we can suppose that |g|=|h|. Further
let g=p+q, h=p-q, i.e. p = gih, q-= E:E. Then we have (p,q)=0.

2 2
We also have

lglIn| = |p+allp-al = Ipl* + lal?,
and
(g,h) = (p+q,p-q) = |pl? - lal?.
Suppose that r=f-up-vq, where u and v are real numbers such
that
(r,p) = 0 and (r,q) = 0.
Then

[£12 = (£,£) = |z|® + v*|p|? + v*Iq|2,
so we have
(£,9) (£,h) = u?*[p|* - v?|q|*.

Therefore

1A

(£,9) (£,0) < u?|p|3|pl? < FI£*(Iql|nl+(g,n)
and '
(£,9) (£,0) 2 ~v?|ql?|ql? 2 -3|£12 (gl |nl-(g,n)).

In connection to Theorem B is:

Theorem 2. If X is a real Hilbert space, X,,...,X, and
Yqir---:¥, are vectors from X and u,v are real numbers such that
we have

u, = G(x,,...,X ) > 0 or v = Gy reeer¥p) > 0, (5)

‘where G is the Gram determinant, then

(uz—G(X1,---,Xm))(Vz-G(y”---,Ym)) < (6)
f (Xy0¥,) «ee (kv ] e
< {uv—det :
g (xm,y1) e (xmym
Proof. Let €,r---1€y be any orthonormal set in X. Using

Lemma 3 from [1] and the well-known Aczél inequality (see for
example [3, p. 57]) we get
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(uz-G(x1,...,me(v’—G(y1,...,ym)) =

F(x,,ej )...(x1,ej )]
= (u*- z |det ...,
.<j

m _(xm,ej1)...(xm,ejm)J B

((y1,e- Yeuuly, e )]
J L

« (V3= 1 'det ..., m

j.<...<j

1 m (ym,e. )...(ym,e.m)J

3, j

(x,,ej )...(x1,ej ). (e] ,y,)---(ej lYm)

(uv- z det . FEE . oom det T .., @

F.<0 <3
1 m (xm,ej )...(xm,ejm)J (ejm,y1)...(e

1
{ Ty e (x,y )]0,
iuv - det . N

A

(xm,y1)...(xm,ym)
Moreover, if we use Aczél’s inequality for n=2 with

a, *u, b ~v, aZ - GlXqrewurx ), bE = Gy reeer¥p),

we get:

Theorem 3. If X is a real Hilbert space, X1""’Xm and

y1,...,ym are vectors from X and u,v are real numbers such that

u? - G(Xyseauyx ) > 0 and v2 - G(Y, reeeryy) >0, (7)
then
(uz—G(x1,...,xm))(vz—G(y1,...,ym)) <
< (uv—G1/2(x1,...,xm)G1/2(y1,...,ym))2 <
(x1,y1)...(x1,ym) (8)
< (uv-det . . . )2.

(Kpe¥q) oo (Xp,y)
Of course, in the last inequality we have used Corollary
5 from [1]. '
The following generalization of a result from [4, p. 383)
is given in [5]:
Theorem C. Let a and b be lineary independent vectors in an
unitary vector space V and let x be a vector in V such that
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(x,a) = u and (x,b) = v. (9)
Then
G(a,b) |x|2 2z |ub - val? (10)

with equality if and only if

(a,va-ub)b-(b,va-ub)a

X = G(a b) (11)

Here we shall note that the following generalization of re-
sults from [4, p. 383], [5] and [6] can be proved similarly:

Theorem 4. Let a,b,c1,...,cn be vectors in an unitary vec-
tor space V such that (a,cj)(b,ci) # (a,ci)(b,cj) for i#j. If
P

i3 (i,j=1,...,n, i#j) are real numbers such that pij = pji’
P = I pi. # 0 then
1gi<jsn I
n : ~-ub,c.
leva—ubl’ < b ? Plj(va u ,cJ) 2. (12)
G(a,b) i=1 j=1 (a,cj)(b,ci)—(a,ci)(b,cj)
j#i

Moreover, further generalizations of these results can be
given in the form as in [7]. For given matrix A=[aij] we use
notation AP} for the matrix [aijp]. We have

6P(a,b) = (lal2|b|?-](a,b)]2)P = |a|?P|b|?P-|(a,b) |?P = ¢/P)(a,p),
as a consequence of the following simple inequality
(a-b)P < aP-bP (a > b > 0, p > 1).

(In fact, this inequality is a simple consequence of Petrovié’s
inequality [3, p. 23] for convex function f(x) = xP, p> 1.)

Using this result and Theorems C and 4 we get:

Theorem 5. Let the conditions of Theorem C be fulfilled
and let p 2 1. Then

c¢‘P)(a,b) |x|?P > |Gb-va|?P. (13)

Theorem 6. Let the conditions of Theorem 4 be fulfilled

and let p 2 1. Then

. ap |va-ub|?P n n Pij(va-ub,c.)
p2P LBl — < (1 | I e e BT
G p (alb) i=1 j=1 ’ J 1C4 1Cy ’ J

j#i

|*)P,
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Note that in [7] a discrete analogue of (13) for u=0, v=1
and peN was considered. The above proof is simpler than that
from [7]}.

2. On some generalizations of the Bessel inequality

E. Bombieri [8] proved the following generalization of the
well-known Bessel inequality:

Theorem D. If XeY sy, are elements of an unitary space
over the field of complex numbers, then
Pty l® s fxl?max [ty (15)
r=1 1Sr<n s=1
We see that if the y, are orthonormal then the above redu-
ces to the Bessel inequality.

In fact Bombieri’s result is equivalent to ([9]):

Theorem E. If XsY, res00Y, are as above, then

n n n
lzc (x,y)|* < (zlc |®|x]>?max = |[(y_,y_)] (16)
r=1 rr r=1 r 1€rsn s=1 r’ist Y

where Cr are arbitrary complex numbers.

" A. Selberg [10] proved the following generalization of the
Bessel inequality:

Theorem F. If X/Y,r+-0y, are as above then

1

2 1oy 120t [y, g ™" sixl? (17)
=1 ! r s=1 Yr’yS '

r
H. Heilbronn [11] proved:

Theorem G. If x,y1,...,yn are as above, then
n 1/2
¥ |(x,yr)l < lx|( z ](yryys)l) . (18)
r=1 ) r,s
Here, we shall note that the following interpolation of (16)
is valid:

Theorem 7. Let the conditions of Theorem E be fulfilled.
Then
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v

n 2 2 n 2 n
| e oy ) 1? s [x]® 1 fe | [(y,y )] s
r=1 r=1 s=1 (19)

x[2( 1 lc,|? P
< |x[?*( =z |c ) max t |y ,y.)
’ r=1 T 1<r<n s=1 r'’s

Proof. Since

n n _
iCr(X:Yr) = (x, L CrYr),

r=1 r=1

we get

¢

n n
|z c (x,y ) ? < [x|?]| z Eryr[’. (20)
r=1 r=1

Further, we have
;T |2 pT : [te 1]
t Cy = I CC (y.,y) < =z |c_|lc_tl(y_,v)
p=q E'T r,s=1 ¥ s °r’’s r,s=1 T s “r'“s

. (21}

< 2 2
Since lCrI|Cs| < (|Cr| +ICS| ), we get from (21)
n
b . (22)

|

1
3
— . n , B n 2 n

Coy 2 =< i1ICr| Si1l(yr,ys)| S (3 [ f?) max  z [(y..yy)

r=1 r r=1 Y 1grsn s=1

Now, (20) and (22) give (19).

Remark. In fact, we proved

n 2 . B 2 , , B
lri1cr<x,yr>l < x| 'ri1cryr| < x| ri,|cr| si1|‘Yr'Ys)' <
,, B 2 n
< x| (ri1|Crn ) max si1l(yr,ys)|-
Now, we shall show that Theorems F and G are simple conse-
quences of the first inequality in (19). Indeed, for

n
——re -1
c, = (x’yr)(si1l(yr’ys)|)

we get
2

n ,, B o
Cz [y ) 202 [y ygd NDTH?2 <
r=1 s=1

n n ’
2 2 -
< Ix| ri1|(x,yr)| (551(yr,ys)|) ’

what is equivalent to (17).
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Now, for

Cp = exp(-i arg(x,y))

the first inequality in (19) becomes

P D2 < Ixl2f 1| |
(2 [(x,y ))? < Ix b E (y vy )1,
r=1 T r=1 g=1 r-s
i.e. (18).

3. Inequalities of Clarkson type

Let (X,(.,.)) be a prehilbertian space on K (K=C,R). The
following results are proved by S.S. Dragomir and I.Sandor [12]:
For every x,y€X we have
lery [P+ Ix=y [P 2 (Ixl+lyDP + | |x| -]y IP (23)
if 1 < p < 2, and
Ity [P+ |x=y|P 2 2(x|P + |y|P) (24)
if p 2 2.

In fact, using the idea of their proof we can prove the

following result:

Theorem 8. Let (X,(.,.)) be a real or complex prehilbertian
space and let x,y€X. If 0 < p < 2 we have
Uxl+lyDPrx[ =1y 1P < |x+y|P+|x-y|P s 2(|x|2+]|y|?)P/2, (25)
If either p 2 2 or p < 0, the nequalities in (25) are re-

versed.

Now, using the classical Clarkson lemma for real numbers
(see for example {13]) we can obtain the Clarkson inequalities

for unitary spaces:

Theorem 9. Let X be an unitary space and let X,yeX. If
1 < p <2, then (p '+q '=1):

x4y ]T + |x-y|9 < 2(]x|P + |y[P)97", (26)

IA

and

v

x4y [P+ |x-y|P 2 2(|x|9 + |y|9P", (27)

If p 2 2 the inequalities are reversed.
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The second inequality in (25) can be generalized for n

vectors.

Of course in a prehilbertian space X we have a parallelogram
identity

|x+yl® + |x-y|? = 2([x]* + |y[*). (28)

By a method of mathematical induction we can prove the fol-
lowing generalization of this identity:

2 n-=1

n
z|x1:x21...zxnl = 2 > Ixilz, (29)

i=1
where xiex, i=1l,...,n, and the summation on the left~hand side
is taken over all (2™ possible choices of the * signs. of
course (29) is equivalent to the following

n
R P (297)

Z]tx1ix2t...ixnl2 =2
i=1

where we now have 2" possible choices of the t signs in summation.
Set

S, = (z]#x, zx

A

n
Ay1/x 1
TR N /> ana Q, = (ii1|xi|p) /P,

The following result is a generalization of the second ine-
quality in (25) and of the results from [14], [15].

Theorem 10. Let X be an unitary space and let x1,...,xnex.
For » > 2, we have

n/i
SA z 2

while for A < 2 (#0) we have the reverse inequality. For ) = 2
we have the identity (297).

Q (30)

2

Also, for » 2 2, we have
n

sh o2 2" 1oxgt. (31)
i=1

Further generalization of this result and of results from

[16] can be given similarly to the proof from [16].
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~

Theorem 1l. Let X, x1,...,xn be as in Theorem 10. We have:

(i) If p,» 2 2, then

2?1 <5, < /27 /R34 Ny (32)
P p
If 0 < p, A £2, then the reverse inequalities are valid in (32).
(1) If 0 < A £ 2, p 2 2, then

2(n—1)/=+1/xQ <s < 2n/An1/z-1/pQ . (33)
P A p
For 0 < p < 2 and A 2 2 we have the reverse inequalities in (33).

(1ii) ‘For A >0, p < 0 we have

)

SA > 2(n-1)/z+1/kn1/z—1/pop. (34)
(iv) For » > 2, p < 0, we have
5, 2 27/ n?/270/Rg (35)

For » < 0 and p > 2 we have the reverse inequalities in (35).
(v) For » < 0 and 0 < p < 2 we have

n/x
< .
SA 2 Qp (36)
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3A HEKOU KJIACHUYHY HEPABEHCTBA BO YHUTAPHHU TPOCTOPA
Jocun E. MevapHuk

Pes3sumMme

BO TpymoT ce nalleHH HEKOJIKYy 3aberlemkd 3a HeKOH KJIaCHUHHU

HepaBEHCTBA BO YHUTAPHM NPOCTOPH, KOM Ce NOBpP3aHH CO HepaBEeHCTBO-
To Ha KomH-BywmaKOBCKH-UIBapl, BecesioOBOTO HEPAaBEHCTBO M HEPABEHCTBO-
TO Ha KiapkcCoH.
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