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TWO APPROACHES TO PROPER SHAPE THEORY
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Abstract

The first proper shape category is constructed in [1] by em-
bedding a separable locally compact metric space in Hilbert cube
without a point and by considering classes of proper fundamental
nets as morphisms. In this paper we give a direct proof that this
category is a subcategory of the proper shape category obtained by
inverse systems of ANR’s and proper maps. At the end are shown
the main properties of the proper shape theory by use of inverse
systems.

Introduction

At present time the mostly used approach to shape theory is by use
of inverse systems and ANR expansions ([5]). There are many other ap-
proaches for which it is shown that they are equivalent.

In the proper shape theory the first approach ([1]) was by embedding a
separable locally compact metric space in the Hilbert cube without a point,
which coresponds to the original approach of Borsuk to shape theory.

In [2] are stated three equvalent approaches to proper shape: 1) by
proper shapings, 2) using proper ANR expansions 3) using proper muta-
tions.

Of special interest is the relation of the original approach of Ball and
Sher in [1] and the approach by proper ANR expansions.

In [2], it is shown that the original proper shape category of Ball and
Sher is a subcategory of the category obtained by proper ANR expansions
approach. The proof is not direct and in fact this result is shown for proper
mutations approach (instead of proper ANR approach ) and then is used
the equivalence of the approaches. For the same result in the more general
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case of proper n—shape we refer to [8].

In this paper we give a direct proof (Theorem 4). At the end are
presented the main properties of the proper shape theory. Using the inverse
system approach some of them are obvious.

I. Proper ANR systems

We repeat a few defenitions about proper maps and proper homotopy.

Let X, Y be topological spaces. A continuous map f: X — Y is
proper if for any compact subset ' of Y, f~!(C) is compact. Two proper
maps fo, fi: X — Y are properly homotopic (fofgf]) if there exists a
propermap F: X xI — Y suchthat F(z, 0) = fo(z) and F(z, 1) = fi(z).

The proper homotopy class of the proper map f: X — Y is denoted
by [f]p

X, Y have the same proper homotopy type if there exist proper maps
f:X —-Y and g:Y — X, such that fgély and gfélx.

In the proper homotopy category PH, objects are all topological spaces,
and morphisms are proper homotopy classes of proper maps.

All spaces considered here, will be metric and locally compact. ANR
will mean an absolute neighbourhood retract for metric spaces. We repeat
some known facts about ANR’s and proper maps as:

Proposition 1. Let X be a locally compact ANR and U C X, U
open. Then U is locally compact ANR.

Proposition 2. If X, Y are metric spaces, f: X — Y is a proper
map and P is a closed subset of X then f|,: P — Y is a proper map.

Definition 4: A proper ANR expansion of a locally compact
metric space X consists of an inverse system X = [X,, [faa,]p, A

of locally compact ANR’s and of a morphism f: X — X in pro-PH i.e.
f =([fa)p | @ € A) (a morphism f:X — X in pro-PH consists of proper
maps fq: X — X, and foo falfgfa, a<d,a,a € A)such that

(i) If P is locally compact ANR and h: X — P is a proper map, then

there exists a« € A and a proper map h,: X, — P such that hafaéh.
(i) Let P be locally compact ANR. For a € A let hy, hy: Xo — P

be proper maps such that hafaéh;fa. Then there exists a' > a such that

hafaa’éh;faa’ .
The following theorem is used in [2] (Theorem 3.2).

Theorem 1. Any locally compact metric spaces X can be embedded
as a closed subset of a locally compact ANR P in such a way that there
exists a cofinal set of closed ANR neighbourhoods of X in P.

Lemma 1. Let X, Y be locally compact metric spaces, P closed
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subset of X and f: P — Y a proper map. If f:X — Y is an extension
of f:P — Y, then there exists a closed neighbourhood of T' of P in X,
such that f |r:T — Y is a proper map.

Proof. [[1], Lemma 3.2, p.168].

Lemma 2. Let X, Y be locally compact ANR’s, P is a closed subset
of X and f, g: P — Y are properly homotopic maps. If f,5: X — Y are
extensions of f, g respectivaly, then there exists a closed neighbourhood
T of P in X, such that f |7 2§ |r.

Proof. Let P be a closed subset of X. Maps f,¢:P — Y are
properly homotopic i.e. there exists a proper homotopy H: P x I — Y,
such that H(z, 0) = f(z), H(z, 1) = g(z).

Let §=(Xx{0})U(PxI)U(X x {1}). S is closed subset of X x I.
We define a map F:S5 — Y with

fo(@ t=0
Flz,t)=S H (z,1) 0<t<1
g (.’E) t=1

Because Y is an ANR, there exists an open neighbourhood U of S
in X x I and an extension F:U — Y of the proper map F:5 —Y.

U is a locally compact ANR, as an open subset of the space X x I,
which is a locally compact ANR. Since U, Y are locally compact spaces,
S is a closed subset of of U and F' is an extension of the proper map F,
from Lemma 1 it follows that there exists a closed nighbourhood ¢ of §
in U C X x1I,such that F'|g:Q — Y is a proper map.

We will choose a closed nighbourhood T of P in X such that Tx/1 C @,
in the following way:

Because U is a metric space, there exists an open nighbourhood V
of § in U, such that S CV CV C Q. Then from compactness of I we
can find an open nighbourhood W of P in X, such that W x I CV i.e.
PxICWxICV.

Because X is a metric space, and P is a closed subset of X, there
exists an open nighbourhood W' in X, such that P C w C w CwW. If
follows that Px [ CW'x ICW xICWxXxICV CQ.

Finally, T = W' is a closed neighbourhood of P in X, such that
TxI1ICQ.

Let & = F |Tx1. Since T'x I is closed subset of @ it follows by Propo-
sition 2, that ®: TxI — Y is a proper map and ® (=, 0) = f(z), ¢ (2, 1) =
g(z) for z € T. We proved that f|r L5 |- ]

Let H be the Hilbert cube, p € H and K = H\{p}. Since H is
homogenous, the space K does not depend on the choice of p.
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Theorem 2. Let X be a separable, locally compact metric space.
Then there exists a proper ANR-expansion of X in K (i.e. an expansion
in which all spaces are subsets of K and bonding maps are inclusions).

Proof. Let X be a separable, locally compact metric space. By Th. 1,
X can be embedded as a closed subspace of the locally compact ANR space
K and there exists a set of closed ANR neighbourhoods {X,|a € A} of X
in K, which is cofinal in the set of all neighbourhoods. The index set A
is ordered by: a < d' if and only if X, C X,.

For ¢« < d', a,a" € A, let i,0: Xy — X, and i;: X — X, be
inclusions. We will show that the morphism in pro-PH, #: X — X,
1 = ([ig], | @ € A), is a proper ANR expansion of X in K.

Let f: X — P be a proper map. Because P is ANR, there exists an

open neighbourhood U of X in K, and an extension f:U — P of f.
From Lemma 2 there exists a closed neighbourhood T of X in U, such
that f|r:T — P is a proper map.

There exists ;Xa such that X, € T. Then the map f,: X, — P
defined by fo = (f|r)|x,: Xa — P is a proper map and f,i, = f.

Let P be a locally compact ANR and let f,, fl: X, — P be proper

maps such that faiaéf;ia. There exists an open neighbourhood U of X
in X, and an extension Za: U— X, of 1,: X — X,.

Now fai;: U — P and fﬁa U — P are extensions of f,i, and fli,,
respectively.

There exists a’ € A, a’ > a, such that X, C U. Then

fatalx,:Xe — P and  fli, |x,:Xa — P
are extensions of f,i, and f!i,. By Lemma 2 there exists a closed neigh-
bourhood T of X in X, such that (foia |x,.) Ir P2 (fﬁa |Xé) 7
There exists a” € A, a" > a', such that X,w CT. If F:T xI — P is
the proper homotopy connecting (fﬂa lXa;) |7 and <f¢'ll~u |Xa') |7, then
F|x,x1: Xqr x I — P is the proper homotopy connecting

(faia lxa,> Ix,0= fata |X,u and (f(,;ia lxa,) |x,0= fota lx,0 -
~ P ~ . . P .
If follows that foiq |x,, ~fata |x,0 1.6 falaa™[staar- 0

I1. Proper shape category Sh?

We will define a proper shape category Sh” whose objects are all
closed subsets of K in the standard way:
Theorem 3. Let p: X — X, X = (X, [paa’]p, 4) be a proper ANR

expansion of X and let Y = (Y,[gsy]p, B) be an inverse system of locally
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compact ANR spaces. If g: X — Y is a morphism in pro-PH there exists
a unique morphism F: X — Y in pro—PH, sush that Fp = g.

Proof. Let g = ([gs], | b € B), g: X — Y be a morphism in pro-PH.
For b€ B, gy,: X — Y, is a proper map, and because p: X — X is proper
ANR expansion there exists F(b) € A and a morphism Fy: Xpp) — Y
such that

Fpr(b)égb, (1)

To show that the pair ([F}]p, F), is a morphism in inv-PH ([5]). Let
b<b'. There exists a € A such that a> F(b),a> F(b'). Let hy, hy: X, = Y}
be the morphisms: hy = Fypp(s)e and hy = qupr Fiyr ppyrya. We have

p p
h1pa = Fy Pr(b)a Pa = Fo PR(b) = Gb (2)
p p p
hapa = @b For PR(b'Ya Pa=qbr For PR(b) = Gob b = g (3)
. P
ie. hip,~hap,.
From the condition ii) for expansion there is @’ > a such that
p : p .
hiPaar >hopaqe . 1t follows F; PF(b)a Paa’ =qbb’ Fy PF(b')a Paa’> 1.€.
Ey pp(b)a,fgqbb, Fy pr(yyar which means that the following diagram com-
mutes up to proper homotopy

X

PRyt N\ PF(b')a!
X (b X F(b)
6w

Y,

pp!

Yb*"

We proved that ([F,]p, F) is a morphism of inverse systems (i.e. a mor-
phism in inv-PH).

If F: X — Y is the morphism in pro—PH, defined as the equivalence
of ([Fb]Pa F)> then Fp=g.

To show the uniqueness of the morphism F:X — Y, suposse that
F': X — Y is another morphism in pro-PH such that

F'p=g (4)

Let F’' be the equivalence class of ([F{],, F'). From (4) it follows

Fy pry) L Jb for every be B (5)
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From (1) and (5) it follows F} pF,(b)éFb pr(s)- There exists a € A, such

that a > F(b),a > F'(b). Then FépFl(b)apaéFpr(b)apa. From the
condition ii) from the definition of expansion, it follows that there exists

p .

a' S A, such that Fé pF'(b)apaa'zFb [)F(b)apaa’7 l.e. Fé pF’(b)a’éFb pF(b)a"
It follows that ([Fy],, F') and ([F}],, F') are in the same equivalence

class i.e. F = F'.

Theorem 4. Let p: X — X and p: X — X' be proper ANR
expansion. Then there is a unique isomorphism in pro-PH, #: X — X',
such that 2p = p'.

Proof. Because p: X — X is a proper ANR expansion from Theorem
3, there exists a unique morphism 2: X — X' in pro-PH such that ip = p’.
On the other side, from p’: X — X' is proper ANR expansion there exists
a unique morphism j7: X' — X in pro-PH such that 7p' = p. Then
jip = 3p’ = p. 1t follows ji = 1x. In the same way 25 = 1x/ ie. ¢ is
isomorphism in pro—-PH. ad

Let XY be closed subsets of K. Then, from Theorem 2 there exist
proper ANR expansions of X and Y, in K. Let &2 X — X,
X = (Xq, [faa’]ps A) and X - X, X' = (Xal, [iala’l]p’ Al) be two
proper ANR expansions of X in K, and 1;:Y — Y, Y = (Y}, [isp]p, B)
and #4:Y — Y, Y' = (Y, [ib,0 s B1) be two proper ANR expan-
sions of Y in K. Because of Theorem 4 there exist unique isomorphisms
7: X - X' and 3:Y — Y’ in pro-PH such that ji = ¢ and j3'4; = 7).

Let F:X — Y and F: X' — Y’ be morphisms in pro-PH. We
define an equivalence relation ”~” between triads by:

1,11, F)~ (¢, 4}, F' if and only if jF=F'j. 6
1

The proper shape morphisms are the equivalence classes of this rela-
tion, i.e. F ={(2, 21, F)]. These are morphisms of the category Sh?.

We define the composition of morphisms F: X — Y, F = [(¢, 11, F)]
and G:Y — Z, G = [(#1, 12, G)] in Sh?. We define GF: X — Z, as the
equivalence class of the triad (2, 22, GF).

II1. Proper shape morphisms defined by proper
fundamental nets

In this part we repeat the original definition of proper shape given by
Ball and Sher in [1].

Let Yy, Vi, Z, (Yo C Z,Y; C Z), be subsets of the topological space
Y. The proper maps fo: X — Yo, fi: X — Yy are properly homotopic in

Z (this is denoted by fo éfl in Z)if there is a proper map F: X x I — Z,
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such that F(z, 0) = fo(z), F(z, 1) = fi(2), for every & € X. This is an
equivalence relation.

Definition. Let X, Y be closed subsets of K, let A be a directed
set and let f = {f,| a € A} be a family of maps fom K to K. A proper

fundamental net from X to Y (in (K, K))is the triad (f, X, Y) with the
following property: for every closed nelghbourhood Q of Y in K, there
exists a closed neighbourhood P of X in K and an index ay € A such
that

P .
fa IPE fao |P n Qv

for all indices a > ag, (sometimes we denote a proper fundamental net by
f:X =Y oronly by f).

Definition. Two proper fundamental nets (L X, Y),
[={fla€A} and (fLX,Y), [={fu]deq)

are properly homotopic ( fN f ) if for any closed neighbourhood @ of Y in

K, there exist a closed neighbourhood P of X in K and indices aq € A
and ag € A', such that

fa IP fa' | in Qv

for every a > ay and for every o’ > af).
This is an equivalence relation. The proper fundamental class is the
equivalence class of the proper fundamental net f: X — Y. It is denoted

by [f] or [(£, X, V)],

Let (LX,Y), f=A{fa] a€ A} and (g,X Y) g=1{g | b€ B}
be two proper fundamental nets. We define composition g f of proper
fundamental nets as proper fundamental net (h, X, Y),

h={gsfa| (a,b) € Ax B}.

Then the composition of two proper fundamental classes is defined in

the usual way i.e.
[g] [£f]=1gf]

The identical proper fundamental net on X, is the degenerated net
consisting only of the function 1y, the identity function on K.

In this way is defined another proper shape category Shl,; whose ob-
Jects are all closed subsets of K, and morphisms are the proper fundamental
classes.
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Relation between the categories Sh? and Shl

Theorem 4. There is a functor ®: Sh ¢ — Sh? defined by ®(X) = X
on objects of Sh% ¢ and such that & is injective on the set of morphisms
of Shis.

Proof: 1) The construction of ¢

We will define a functor ®: Shly — ShP. On objects it is defined by
P(X)=X.

Let X, Y be closed subsets of K. In order to associate to a morphism
[(f, X, Y)] in Sh% ¢ a morphism in ShP, we choose a representative of

this class, i.e. a fundamental net (L X, Y), f={frl A€ A} To this
fundamental net we associate a triad (z, 7, F') in the following way:

Let :X — X, i = ([i,,]p lae A), X = (x [0, A), and

iY — Y, j=(lu,10€B), ¥ = (Y L, B), be proper ANR
expansion in K, of X and Y respectively.

for b € B, there exists a closed neighbourhood P of X in K, and
an index Ay € A such that

f>\|1!>é Holp in Y (14)

for A > /\0.
Because {X, | a € A} is cofinal in the set of all neighbourhoods there
exists a € A, such that X, C P, and form (14) we obtain,

P .
Alx.> fr lx, in Y,

for A > Xo. In this way, by putting F(b) = a, it is defined a function
F:B — A. We put

Fo = fao |xpey: XF@w) = Yo

Note that if for A, A > Ao we put F} = fx |x,0," Xr() — Yo then

Fé@Fb i.e. F! € [Fy)p. This shows that a choice of any A > Ao, instead of
Ao, produces the same class of proper homotopy [F}]p.

We now show that the pair <[Fb]p , F) is a morphism in inv-PH ([5]).

Let b < V', 1.e. Yy CY. Then F, = f,\0 |Xp(b):XF(b) — Y, and
Fi = oy Ixpany: XFey = Yoo

There exists a € A, such that a > F(b), F(b'). Because X, is a
closed subset of X p4y,

Molx.2hlx., in Y (15)
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for A > Ao, and since X, is a closed subset of Xp(y),

folx® flx, i Yy, (16)

for X > Aq.
There exists Ay € A, such that Ay > Ag, A;. From (15) and (16) we

have fy, |x, ©fy, |x, in Yy and fx, [x, 2fx, |x. in Yo It follows

. /4 .
Joor o 1x.™ fro lx,  In Y5,
i.e.
. . 14 .
Joot Py tperya = Fyip(b)a s

i.e. the following diagram commutes up to proper homotopy:
Xq

tP(b)a” N\ LF(b)a
X F(p) X Fey)

N

Jopt
Yb — Ybl

We proved that <[Fb]p, F) is ‘a morphism in inv-PH. Let F' be the

morphism in pro-PH defined by the equivalence class of ([Fb]p , F).

To the proper fundamental net (f, X,Y), f = {fa| A € A} we as-

sociate the triad (2, 7, F').
Finally, we define ®: Shl; — ShP, by associating with a proper shape

morphism in Shig, [(L X, Y)], the proper shape morphism in ShP,
F:X — Y such that F =[(s, 7, F)].

2) & is well defined

To prove that & is well defined, let f, f' € [(f, X, Y], ie. i@ "
Let :X — X', &' = {[id, | c € C} o0 X = Xey X' = (X, [ico] )

p ?
andlet §:Y — Y, §'={ljd, | d€ D}, ja Y —Ye, Y'=(Ya, s, D)
be another proper ANR expansions of X and Y in K, respectively.

From Th. 2, there is a unique isomorphism in pro-PH, k: X — X',
such that k¢ = 2. This isomorphism can be defined in the following way:
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for ¢ € C, there exists k(c) € A, such that k(c) > ¢, ie. X 2 Xy
Then, k: X — X' is defined as the equivalence class of the morphism in

inv-PH, ([ick(c)]p, k)
In the same way we can define the unique morphism I: Y — Y’ which

has the property I = 3'.

Now, let d € D. Since i@i’, for Y4 there exist a closed neighbour-
hood P of X in K and indices A\ € A and 6; € A, such that for A > Ay
and for § > 61,

b IPé filp in Y.
1t follows that
p ) :
Alxxfslx  in Y- (17)

Let F: X — Y be the morphism in pro-PH associated with f, and let
F':X' — Y' be the morphism in pro-PH associated with
f'=A{f16€A}

By the definition of the morphism F': X' = Y' it follows: for d € D
and F'(d), there is an index &g, such that

P .
fgl; |XF,((,)2 féo IXF’(J) in Yy,

for § > 8. (By the remark in the definition it is possible to choose §p, so
that &9 > & and to choose Fj = fg : Xpi(a) — Ya.)

In the same way, by the definition of the morphism F: X — Y, it
follows: for I(d) € B, one can choose F(I(d)) and an index Ao, such that

f'\ lXF( )é f/\o lXF(’(d)) in Yl(d)

1(d)

for A > Ag. (By the remark in the definition one can choose Ag so that

Ao > A1 and to choose Fy = fi,: XF(t(d)) — Yyaq)-)
It follows that
p .
fElx=> f lx  in Yg (18)
for § > by, and also
Alx® folx in Y- (19)

for A > Ap.
From (17) we have

4 .
fi x> frolx in Yiyg € Ya,
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i.e.
P . )
Fylx™ jaa) Fay Ix in Yg.
It follows that

Fyi Y piga) k (F'(d)) k(Fi(a) ~ ]"”(d) Fiay s F(ia)) ’

i.e. F'ki=1F1. From Theorem 2 it follows that F'k =L F.
Hence, we have shown that
(3,3, F)~ (¢, §', F"),
i.e. that ® is well defined.

3) ¢ is a functor
Let X, Y, Z be closed subsetes of K and let

$X - X, i= ([ia]p lac A) X = (Xa, liaa], » A) ;
i =Y, 5= (L, | b€B),Y = (Vi iw], B)
m:Z — Z,m= ([mc]p | ce C) , Z = (ZC, [mcc/]p , C)

be proper ANR expansions in K of X, Y and Z, respectlvely Let
[(f,X,Y)] and [(g, Y, Z)]| be proper shape morphlsm in Sh% . To the

representatives of the equivalence classes (L X, Y) € [(_f_, X, Y)] and
(g, Y, Z) € [(g, Y, Z)], in the same way as above we associate triads
(1, 7, F) and (3, m, G) (here F, G are morphisms in pro-PH, i.e. equiv-
alence classes of morphisms ([Fb]p, F) and ({Gc]p, G), respectively).
The composition GF in pro-PH is defined as the equivalence class of the
morphism ([Gc F(;(C)]p, FG), where FG:C — A, and

GeFaoy: Xra(e) = Zeyc€C.

Let ¢ € C. Since (g, Y, Z),g={gs] 6 € A} is a proper fundamental
net, for the closed nelghbourhood Z. of Z in K there exist a closed
11e1ghb0urhood Yeo( of Y in K and an index 6 € A, such that for
6 > b1,

gs |Y(,(c) 9s, |Y(J(C) m an

i.e. there exists a proper homotopy G Ye (o) x I = Z,, such that

é(yv 0) = gs lYG(C) (y) and é(ya 1) = gs IYG(C) (y) .




Since (f, X,Y), f=4{fA| A€ A} is a proper fundamental net, for
the closed nelghbourhood Y(,(c) of Y, there exists a closed nelghbourhood
Xri(e) of X in K and an index /\1 € A, such that for A > Ay,

/4 .
fA IXFG(C): fM IXF'G(C) m YG(C) s

i.e. there exists a proper homotopy F: Xra(ey X I — Yee), such that

F’(:I), 0) = fi IXFG(C) (z) and FI(T? 1) = fa IXFG(C) (z).
Then (g5 |y, oF: Xpa() X I — Z. is a proper homotopy which
connects ¢sfo |Xm(c) and gsf, |Xm(c)7 i.e.

/4 .
géfA IXFG(C): g&f/h |XFG(C.) in Z, (20)

and @ (f |Xroe, (2), t) is a proper homotopy in Z., connecting
95/ [Xpoy and g5, 5, [Xpoq,s ie

géfk] IXFG(C) qﬁlf\l IXF(J(C ln ZC‘ (21)

y (20), (21) we have for (A, §) > (A, 61),

g(sz1 IXFG(C) lefxl |XF(*(c) 111 Z .

We have thus proved that for every ¢ € C, for the closed neighbour-
hood Z. of Z, there exists an index F(:(c) € A i.e. a closed neighbour-
hood XF(_, (¢) of X and there exists a pair of mdlces (A1, 61), such that
for ()\, (5) 2 (/\1, 61),

P .
g(sf)\ lAXF(;((.)2 g&lf)\l |XFG(C) m ZC'

We put H = FG, and H. = g5, [, |Xm<c>- Then, by the above defi-

nition, the equivalence class of ([Hc]p , H), is the morphism H in pro-PH

associated with the proper fundamental net ¢f = {gsfx | (A, §) € A x A}.
Since -

I{C = g(s]f)\] |XFG(c 961 |Y(;(C) f>\1 |Xp(_‘~( ) (-V F(1(C)7

we have ([Hel,, #) = ((Gd,, G) ([Faw],: F) in inv-PH, and it fol
lows that H = GF in pro—PH.
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Then H:X — Z is a proper shape morphism in Sh?, such that
H = (i, m, H)| = [(i, m, GF)].. (22)
From GF = [(i, m, GF)] and (22) we conclude that
H =GF in Sh*. (23)
It follows that
8 (((5,X,1)] [0, 2)]) = @ (L X)) @ ([0, Y, 20) -

Now, to the proper fundamental net (1, X, X), 1 = {14} we associate
the triad (2,1, 1x).

iX—X, i=(lid,lae A), Xs= (X, liaat], » A)

is a proper ANR expansion of X in K, and 1x is the equivalence class of
the morphism ([1xa]p , 1,4). Then @ ([(1, X, X)]) = la(x) = 1x.

We have thus proved that & is functor.

® is injective

Let i:X — X, i = ([ia], | a € A), X = (Xa liaal, s A) and let
X - X' i = ([ib]pl be B), X' = (Xb, [inpr], » B) be two proper
ANR expansions of X in K, and

i =Y, i=(Ud,1ceC), Y=Yl C)

and

¥ =¥, = (lid, | de D), Y'= (Ve lael,. D)

be two proper ANR expansions of ¥ in K.
Let (LX,Y), f=1hH] A€ A} and (g,X,Y), g = {95 | 6 e A}
be two proper fundamental nets and let

s((LXY)=E amd @ (X V))=6.

Let ¢, 7, F) be a representative of F, and (7', 3', G) be a representative
of G. Suposse that F = G. It follows that (7, j, F) ~ (', 7', G),ie.

IF =Gk, (24)
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where k: X — X' and : Y — Y’ are isomorphisms in pro-PH, defined by
the ([ibk(b)]p , k:) and ([jd,(d)]p , l), morphisms in inv-PH, respectively.
In order to prove that & is injective, we have to show that f’gg.

Let d € D and Y; be a closed neighbourhood of Y in K. Then for
the map jqia) Fica): XF(l(d)) — Yy we have

. 2N .
Jaay Fieay = Jaway fr |XF(M)) in Yy (25)

for A > Ay, and also for the map G ;¢ — Yy, we have

Gk (@)’ ch(G‘(d))

G L gst in Yy (26)

Geayk (i) Gayk (G(a)) |Xk(G(d))

for 6 > 9.

By (24), for d € D there exists a € A, such that a > F(l(d)),k(G(d))
and there exists a closed neighbourhood X, of X such that:

. P, . R .

Jaa) Fieoy 1x.= Gatggy (6oa) |x, in Yg. (27)
On the other side from (25) and (26), it follows that:

: v P . .

Jaway Fiay 1x.= Jaay fr 1x, in Yy (28)
for A > Ag, and

. 1 fe} N : -

“Gayk (c(a)) Ga lx,~ 95 LGk (G(a) lx, in Y (29)

for 6 > 4.
From (27), (28) and (29) it follows that for A > Ay and & > éo

. P . .
Jaay I |X“ggé’lG(d)k(G(d)) lx. in Ya,

i.e. i&g. It follows that [(L X, Y)] = [(g_, X, Y)], i.e. ® isinjective. O

The question whether ®:Sh% o — ShP is an isomorphism remains
open.

By the previous theorem the image under the functor ®: Shiy s — Sh?
of an isomorphism [(f, X, Y)] in category Shhg, is an isomorphism in
the category ShP. Therefore we obtain the following theorem.
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Theorem 5. If X, Y are subsets of K, then Sh* X = Shh YV
implies Shipq X = ShPY. a

From this theorem and from some known facts about inverse systems,
the following fundamental properties of the proper shape category ShP
(first stated in [1] and [2]) are easily proved.

If X, Y are locally compact metric spaces and X'EJY, then from
[1], Theorem 3.10, Shi;3 X = Shi, Y, and from Theorem 5, it follows
Sh? X = ShPY.

In the other direction we have:

Theorem 6. If X, Y are locally compact metric ANR’s and
Sh? X = ShPY then XY,

Proof. We can associate with X and Y a trivial ANR expansions
consisting only of the spaces X and Y respectively. a

Let X, Y be compact metric spaces. We can associate with these
spaces ANR expansions X = (X,,, [in, nt1]) and Y = (Y, [in, ny1]). which
are inverse sequences of compact sets. Since maps between compact sets
are always proper, the proper shape theory for compact sets is the same as
the usual shape thory i.e. we have the following theorem.

Theorem 7. If X, Y are compact metric spaces, then
Sh? X = ShPY if and only if Sh X = ShY. O

Finally if X, Y arelocally compact metric spaces, X is compact and
Y is not then X has an ANR expansion which is an inverse sequence and
Y does not. It follows that Sh? X differs from Sh?Y.
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JIBA IIPUCTAII BO TEOPUJATA
HA IIPAB OBJ/INK

Hurura HlexyrkoBckn m Buosiera Bacunescka

Pezume

Bo IneHemmno BpeMe, HajMHOrY KOPHCTEH NPUCTaIl BO TeOpHjaTa
Ha OOJMK e NpUucTanoT co uHBep3HW cucTeMu Ha AHP excnmamsum.
OprusaJHUOT OPUCTALl BO Teopujata Ha IpaB ODJIMK € cO CMeCcTyBambe
Ha cemapabu/eH JIOKaJIHO KOMIAKTEH MeTPUUKU npoctop Bo Xmuabep-
ToB Ky6 Ge3 enma Touka [1]. Mop¢usmu Ha npaBuoT 06IMK NOMery IBa
opocTopa ce KilacuTe Ha eKBUBajleHIMja Ha OpaBUTe QYHIaMeHTATHN
MpPexU.

Bo oBoj Tpyn naBamMe IWPeKTeH IOKa3 [eKa OPUTMHAIHATa KaT-
eropvjaTta Ha Opas obauk o4 [1] e moTKaTeropuja Ha KaTeropujata
nobuena co uaBepsnn cucremu u npaBu AHP ekcnansum. Ha kpajor
ce TOKa)KaHY HEKOJKYy OCHOBHM TeopeMy BO TeopMjaTa Ha Ipas OOJIMK
3a MPUCTAOT cO UMHBep3HM cucteMu u npasu AHP ekcnansnum.
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