Математички Билтен 17 (XLIII) 1993 (51-52) Скопје, Македонија

ISSN 0351-336X

ON A CONJECTURE OF P. NYLEN AND L. RODMAN Vladimir Rakočević¹⁾

Abstract. In this note we prove that conjecture of P. Nylen and L. Rodman [2, Integral Equations and Operator Theory, Vol. 13(1990), 728-749] is true.

We use the same notations as in [2], where there is the following

<u>Conjecture</u> [2, Conjecture 5.11]. Every Banach algebra A (with unit) has the spectral radius property, i.e. for every a \in A with the spectral point sequence $\{\mu_j(a)\}_{j=1}^{\infty}$ of infinite length satisfying

$$\mu_{\mathbf{m}}(\mathbf{a}) = \lim_{\mathbf{n} \to \infty} \mu_{\mathbf{n}}(\mathbf{a})$$

for some integer m, the limit $\lim_{n\to\infty}\mu_n(a)$ is actually equal to the spectral radius of a in the factor algebra A/K, where K is the norm closure of the ideal of finite rank elements.

To verify [2, Conjecture 5.11] it is enough to prove

Theorem. Let A be a complex Banach algebra with unit 1 and K be the closure of the ideal F of finite rank elements of A. If a \in A, $\lambda \in \sigma(a)$ and $|\lambda| > r_k(a)$, then λ is a f.m. spectral point of a.

<u>Proof.</u> Set A'=A/rad(A), where rad(A) is the Jacobson radical of A. The algebra A' is semisimple and so the socle of A', soc(A'), exist. We write x' for the coset x+rad(A) and if SCA write $S'=\{x': x\in S\}$.

Suppose that a \in A, $\lambda \in \sigma(a)$ and $|\lambda| > r_k(a)$. F' is a two-sided ideal of A', and from [2, Corollary 2.3] and [3, Theorem 3.2], it

¹⁾ Supported by the Science Fund of Serbia, grant number 0401A, through Matematički institut

follows that $F' \subset soc(A')$. It is easy to see that $r_k(a) \geq r_{cl(F')}(a'+cl(F')) \geq r_{cl(soc(A'))}(a'+cl(soc(A')))$, where cl(F') and cl(soc(A')) denote, respectively, the closure of F' and soc(A'). Now, according to [1,F.3], it follows that $a-\lambda$ is a Fredholm element of A. From [1, Theorem F.3.7, F.3.8 and F.3.9], it follows that λ is an isolated point in $\sigma(a)$. Let $e_{\lambda}(a)$ be the Riesz idempotent associated with λ . From $|\lambda| > r_k(a)$, it follows that $e_{\lambda}(a) \in F$. \square

REFERENCES

- [1] Barnes, B.A., Murphy, G.J., Smyth, M.R.F., and West, T.T.: Riesz and Fredholm Theory in Banach Algebras, Pitman Research Notes in Math. 67 (1982)
- [2] Nylen, P., and Rodman L.: Approximation numbers and Yamamoto's theorem in Banach algebras, Integral Equations and Operator Theory, Vol. 13 (1990), 728-749
- [3] Smyth, M.R.F.: Riesz Theory in Banach Algebras, Math. Z., 145 (1975), 145-155

ЗА ЕДНО ТВРДЕЊЕ НА Р. NYLEN И L. RODMAN Владимир Ракочевиќ

Резиме

Овде докажуваме дека хипотезата на P. Nilen и L. Rodman [2] е точна.

Vladimir Rakočević University of Niš Faculty of Mathematics Cirila and Metodija 2 18000 Niš Yugoslavia