Математички Билтен **36**(LXII) 2012(47-53)Скопје, Македонија

DUAL SPACE OF THE SPACE OF BOUNDED LINEAR n-FUNCTIONALS

RISTO MALCHESKI AND ZDRAVKO CVETKOVSKI

Abstract. In [2] are considered n-Banach spaces, and in [4] are considered bounded and continuous linear n-functionals defined on n-normed space and several theorems connected with them, are proved. Then is proved that: Linear n-functional F is continuous if and only if Fis bounded (theorem 4). In this paper, a dual space X^* of space of bounded linear n-functionals is considered and it is proved that: if Xis n-Banach space than (X*, ||.||) is Banach space.

1. Introduction

Definition 1. Let X_i , i = 1, 2, ..., n be linear subspace of same vector nnormed space. Then the mapping $F: X_1 \times \ldots \times X_n \to \mathbb{R}$ is called n**functional** with domain $X_1 \times X_2 \times ... \times X_n$.

Definition 2. Let F be nfunctional with domain $X_1 \times X_2 \times ... \times X_n$. Then

F is linear
$$n-$$
 functional if the following conditions are satisfied:
1. $F(x_1+y_1,x_2+y_2,\ldots,x_n+y_n) = \sum_{\substack{z_i \in \{x_i,y_i\}\\i=1,\ldots,n}} F(z_1,z_2,\ldots,z_n)$
2. $F(\alpha_1x_1,\alpha_2x_2,\ldots,\alpha_nx_n) = \alpha_1\alpha_2\ldots\alpha_nF(x_1,x_2,\ldots,x_n)$
 $\alpha_i \in \mathbb{R}, i=1,2,\ldots,n$

Definition 3. Let X be n-normed space. Let F be n-functional with domain $D(F) \subseteq X^n$ then F is bounded if there exists real number $K \ge 0$ such that $F(\alpha_1 x_1, \alpha_2 x_2, \dots, \alpha_n x_n) = \alpha_1 \alpha_2 \dots \alpha_n F(x_1, x_2, \dots, x_n).$

Let F be bounded n-functional, we define **norm** of F, denoted by ||F||, with

$$||F|| = \inf \{ K \, ||F(x_1, x_2, \dots, x_n)| \leqslant K ||x_1, x_2, \dots, x_n||, (x_1, x_2, \dots, x_n) \in D(F) \}$$
(1)

If F is unbounded n-functional, then we define $||F|| = +\infty$.

In this context for bounded linear n-functionals in [4] the following properties are proved.

Lemma 1. Let F be a bounded linear n-functional and x_i , i = 1, ..., n, are linearly dependent vectors such that $(x_1, x_2, ..., x_n) \in D(F)$. Then $F(x_1, x_2, ..., x_n) = 0$.

Theorem 1. Let F be a bounded linear n-functional on domain D(F). Then

$$||F|| = \sup\{|F(x_1, x_2, \dots, x_n)|; ||x_1, x_2, \dots, x_n|| = 1, (x_1, x_2, \dots, x_n) \in D(F)\}$$
$$= \sup\left\{\frac{|F(x_1, x_2, \dots, x_n)|}{||x_1, x_2, \dots, x_n||}; ||x_1, x_2, \dots, x_n|| \neq 0, (x_1, x_2, \dots, x_n) \in D(F)\right\}.$$

Further on, continuity of linear n-functional is defined as following.

Definition 4. Let F be n-functional. Then F is continuous at the point (x_1, x_2, \ldots, x_n) if for all $\varepsilon > 0$ exist $\delta > 0$ such that

$$|F(x_1, x_2, \dots, x_n) - F(y_1, y_2, \dots, y_n)| < \varepsilon$$

always when

$$||z_{1j}, z_{2j}, \dots, z_{nj}|| < \delta$$

where

$$z_{ij} = \begin{cases} x_i - y_i, i = j \\ x_i \lor y_i, i \neq j \end{cases}$$

for j = 1, 2, ..., n. The n-functional F is continuous if F is continuous at every point from its domain.

In [4], for continuous *n*-functionals are proved the following properties.

Theorem 2. If the linear n-functional F is continuous at the point (0, 0, ..., 0), then F is continuous at every point from its domain D(F).

Theorem 3. Linear n-functional F is continuous if and only if F is bounded.

Definition 5. The sequence $\{x_k\}$ from the vector n-normed space L is Cauchy sequence if there exists linear independent vectors $y_1, y_2, ..., y_n$ such that

$$\begin{split} &\lim_{k,m\to\infty} ||x_k-x_m,y_2,...,y_{n-1},y_n|| = 0\\ &\lim_{k,m\to\infty} ||x_k-x_m,y_1,...,y_{i-1},y_{i+1},...,y_n|| = 0, \quad i=2,...,n-1\\ &\lim_{k,m\to\infty} ||x_k-x_m,y_1,...,y_{n-1}|| = 0. \end{split}$$

Definition 6. The sequence $\{x_k\}$ from n-normed space L is convergent if there exist $x \in L$ such that

$$\lim_{k \to \infty} ||x_k - x, y_1, ..., y_{n-1}|| = 0, \text{ for all } y_1, y_2, ..., y_{n-1} \in L.$$

For x we shall say that is limit for the sequence $\{x_k\}$ and we'll write $x_k \to x, k \to \infty$.

Definition 7. For n-normed space L, well say that is n-Banach space if every Cauchy sequence is convergent.

In [4] the following property is proved.

Theorem 4. Every real n-normed vector space with dimension n is n-Banach space.

2. DUAL SPACE OF THE SPACE OF BOUNDED LINEAR $n ext{-}FUCTIONALS$

Definition 8. Let X be n-Banach space, X^* is a set of bounded linear n-functionals on domain X^n and let $F, G \in X^*$. We define

a)
$$F = G$$
 if $F(x_1, x_2, ..., x_n) = G(x_1, x_2, ..., x_n)$, for all $(x_1, x_2, ..., x_n) \in X^n$,

b)
$$(F+G)(x_1, x_2, ..., x_n) = F(x_1, x_2, ..., x_n) + G(x_1, x_2, ..., x_n)$$
, for all $(x_1, x_2, ..., x_n) \in X^n$,

c)
$$(\alpha F)(x_1, x_2, \dots, x_n) = \alpha F(x_1, x_2, \dots, x_n)$$
, for all α and all $(x_1, x_2, \dots, x_n) \in X^n$.

Theorem 5. Let X be n-Banach space. Then $(X^*, ||.||)$ is Banach space.

Proof. Let $(x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n) \in X^n$ and $\alpha_i \in \mathbb{R}, i = 1, 2, ..., n$. Then according to Definition 2. we have

$$\begin{split} &(F+G)(x_1+y_1,x_2+y_2,\ldots,x_n+y_n) = \\ &= F(x_1+y_1,x_2+y_2,\ldots,x_n+y_n) + G(x_1+y_1,x_2+y_2,\ldots,x_n+y_n) = \\ &= \sum_{\substack{z_i \in \{x_i,y_i\}\\i=1,2,\ldots,n}} F(z_1,z_2,\ldots,z_n) + \sum_{\substack{z_i \in \{x_i,y_i\}\\i=1,2,\ldots,n}} G(z_1,z_2,\ldots,z_n) = \\ &= \sum_{\substack{z_i \in \{x_i,y_i\}\\i=1,2,\ldots,n}} (F+G)(z_1,z_2,\ldots,z_n) \end{split}$$

$$(F+G)(\alpha_{1}x_{1}, \alpha_{2}x_{2}, \dots, \alpha_{n}x_{n}) =$$

$$= F(\alpha_{1}x_{1}, \alpha_{2}x_{2}, \dots, \alpha_{n}x_{n}) + G(\alpha_{1}x_{1}, \alpha_{2}x_{2}, \dots, \alpha_{n}x_{n})$$

$$= \alpha_{1}\alpha_{2} \dots \alpha_{n}F(x_{1}, x_{2}, \dots, x_{n}) + \alpha_{1}\alpha_{2} \dots \alpha_{n}G(x_{1}, x_{2}, \dots, x_{n})$$

$$= \alpha_{1}\alpha_{2} \dots \alpha_{n}[F(x_{1}, x_{2}, \dots, x_{n}) + G(x_{1}, x_{2}, \dots, x_{n})]$$

$$= \alpha_{1}\alpha_{2} \dots \alpha_{n}(F+G)(x_{1}, x_{2}, \dots, x_{n}).$$

Further on, because of Definition 3 we have

$$|(F+G)(x_1, x_2, \dots, x_n)| = |F(x_1, x_2, \dots, x_n) + G(x_1, x_2, \dots, x_n)|$$

$$\leq |F(x_1, x_2, \dots, x_n)| + |G(x_1, x_2, \dots, x_n)|$$

$$\leq ||F|| \cdot ||x_1, x_2, \dots, x_n|| + ||G|| \cdot ||x_1, x_2, \dots, x_n||$$

$$= (||F|| + ||G||)||x_1, x_2, \dots, x_n||,$$

which means that $F + G \in X^*$ and clearly $||F + G|| \le ||F|| + ||G||$.

Analogously we can prove that for every α and every $F \in X^*$, $\alpha F \in X^*$ and $||\alpha F|| = |\alpha| \cdot ||F||$ holds.

From the other hand, according to Definition 3 we have $|F(x_1, x_2, \dots, x_n)| \le ||F|| \cdot ||x_1, x_2, \dots, x_n||, \text{ for all } (x_1, x_2, \dots, x_n) \in X^n,$ so ||F|| = 0 if and only if F = 0, which means that X^* is vector space with norm defined by (1).

Let $\{F_k\}$ be Cauchy sequence on X*, i.e. let

$$\lim_{\substack{m \to \infty \\ k \to \infty}} ||F_k - F_m|| = 0 \tag{2}$$

Then for all $(x_1, x_2, \ldots, x_n) \in X^n$ is true that

$$|F_k(x_1, x_2, \dots, x_n) - F_m(x_1, x_2, \dots, x_n)| \le ||F_k - F_m|| \cdot ||x_1, x_2, \dots, x_n||$$

which means that for every $(x_1, x_2, \ldots, x_n) \in X^n$ the real sequence $\{F_k(x_1,x_2,\ldots,x_n)\}\$ is a Cauchy sequence. On X^n let define functional Fwith

$$F(x_1, x_2, \dots, x_n) = \lim_{k \to \infty} F_k(x_1, x_2, \dots, x_n), (x_1, x_2, \dots, x_n) \in X^n.$$

 $F(x_1, x_2, ..., x_n) = \lim_{k \to \infty} F_k(x_1, x_2, ..., x_n), (x_1, x_2, ..., x_n) \in X^n.$ Then, for all $(x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n) \in X^n$ and $\alpha_i \in \mathbb{R}, i = 1$ $1, 2, \ldots, n$ we have

$$F(x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) = \lim_{k \to \infty} F_k(x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

$$= \lim_{k \to \infty} \sum_{\substack{z_i \in \{x_i, y_i\}\\i=1, \dots, n}} F_k(z_1, z_2, \dots, z_n) = \sum_{\substack{z_i \in \{x_i, y_i\}\\i=1, \dots, n}} \lim_{k \to \infty} F_k(z_1, z_2, \dots, z_n) =$$

$$= \sum_{\substack{z_i \in \{x_i, y_i\}\\i=1, \dots, n}} F(z_1, z_2, \dots, z_n)$$

and

$$F(\alpha_1 x_1, \alpha_2 x_2, \dots, \alpha_n x_n) = \lim_{k \to \infty} F_k(\alpha_1 x_1, \alpha_2 x_2, \dots, \alpha_n x_n)$$

$$= \lim_{k \to \infty} \alpha_1 \alpha_2 \dots \alpha_n F_k(x_1, x_2, \dots, x_n)$$

$$= \alpha_1 \alpha_2 \dots \alpha_n \lim_{k \to \infty} F_k(x_1, x_2, \dots, x_n)$$

$$= \alpha_1 \alpha_2 \dots \alpha_n F(x_1, x_2, \dots, x_n),$$

i.e. F is nlinear functional. On the other hand, for the sequence $\{F_k\}$, $||F_k|| - ||F_m|| | \le ||F_k - F_m||$ holds.

Now from (2) we get that $\{||F_k||\}$ is real Cauchy sequence, which means that there exist $K \in \mathbb{R}$ such that $||F_k|| \leq K$, for all $k \in \mathbb{N}$, from where we get

$$|F(x_1, x_2, ..., x_n)| = |\limsup_{k \to \infty} F_k(x_1, x_2, ..., x_n)|$$

$$= \limsup_{k \to \infty} |F_k(x_1, x_2, ..., x_n)|$$

$$\leq \limsup_{k \to \infty} ||F_k|| \cdot ||x_1, x_2, ..., x_n||$$

$$\leq K||x_1, x_2, ..., x_n||,$$

i.e. $F \in X*$.

We'll prove that $\{F_k\}$ converges to F. Let $||x_1, x_2, ..., x_n|| \neq 0$. If $\varepsilon > 0$ is chosen, then from (2) we have that there exist $n_0 \in \mathbb{N}$ such that $||F_m - F_k|| < \varepsilon$ when $m, k > n_0$, so by Definition 3 we have

$$|F_m(x_1, x_2, \dots, x_n) - F_k(x_1, x_2, \dots, x_n)| \le ||F_m - F_k|| \cdot ||x_1, x_2, \dots, x_n||$$

 $\le \varepsilon ||x_1, x_2, \dots, x_n||,$

for all $m, k \ge n_0$. On the other hand, because of

$$F(x_1, x_2, \dots, x_n) = \lim_{k \to \infty} F_k(x_1, x_2, \dots, x_n)$$

there exist $M = M(x_1, x_2, ..., x_n) > n_0$ such that

$$|F_M(x_1, x_2, \dots, x_n) - F(x_1, x_2, \dots, x_n)| < \varepsilon ||x_1, x_2, \dots, x_n||.$$

So we have

$$\begin{split} |F_k(x_1, x_2, \dots, x_n) - F(x_1, x_2, \dots, x_n)| &\leq \\ &\leq |F_k(x_1, x_2, \dots, x_n) - F_M(x_1, x_2, \dots, x_n)| + \\ &+ |F_M(x_1, x_2, \dots, x_n) - F(x_1, x_2, \dots, x_n)| \\ &\leq \varepsilon ||x_1, x_2, \dots, x_n|| + \varepsilon ||x_1, x_2, \dots, x_n|| = 2 \cdot \varepsilon ||x_1, x_2, \dots, x_n|| \end{split}$$

for $k > n_0$. If $||x_1, x_2, ..., x_n|| = 0$, then the vectors $x_1, x_2, ..., x_n$ are linearly dependent, and according to Lema 1 it follows that

$$F_k(x_1, x_2, \dots, x_n) = 0 = F(x_1, x_2, \dots, x_n)$$

which means $|F_k(x_1,x_2,\ldots,x_n)-F(x_1,x_2,\ldots,x_n)| \leq 2\cdot \varepsilon ||x_1,x_2,\ldots,x_n||$, for all $k>n_0$. Hence, for all $(x_1,x_2,\ldots,x_n)\in X^n$ the following holds $|F_k(x_1,x_2,\ldots,x_n)-F(x_1,x_2,\ldots,x_n)| \leq 2\cdot \varepsilon ||x_1,x_2,\ldots,x_n||$, for all $k>n_0$. i.e. accordingly to Definition 3 we get $||F_k-F|| \leq 2\varepsilon$, for $k>n_0$, i.e. $\{F_k\}$ converge to F.

Finally from the arbitrarily of the Cauchy sequence $\{F_k\}$ we have that $(X^*, ||.||)$ is Banach space.

REFERENCES

- [1] Kurepa S.: Funkcionalna analiza, Skolska knjiga, Zagreb
- [2] Малчески Р., Малчески А.: n-банахови простори, Зборник на трудови од II конгерс на математичарите и информатичарите на македонија, Охрид (2000)
 - [3] Misiak A.: n-Inner Product Spaces, Math.Nachr. 140
- [4] Чаламани С., Малчески Р.: Непрекинати линеарни n-функционали, Зборник на трудови од III конгрес на СММ, (2008)

ДУАЛЕН ПРОСТОР НА ПРОСТОРОТ ОГРАНИЧЕНИ ЛИНЕАРНИ n- ФУНКЦИОНАЛИ

Ристо Малчески, Здравко Цветковски

Резиме

Во [2] се разгледани n-банаховите простори, а во [4] се разгледани ограничените и непрекинатите линеарни n-функционали дефинирани на n-нормиран простор и се докажани неколку тврдења во врска со истите. Притоа, е докажано дека: Линеарниот n-функционал F е непрекинат ако и само ако е ограничен (теорема 4). Во оваа работа е разгледан дуалниот простор X^* на просторот ограничени линеарни n-функционали и е докажано дека ако X е n-банахов простор, тогаш $(X^*, ||\cdot||)$ е Банахов простор.

Faculty for informatics, FON University, Skopje, Macedonia $E\text{-}mail\ address:\ risto.malceski@gmail.com}$

FACULTY FOR INFORMATICS, EUROPEAN UNIVERSITY, SKOPJE, MACEDONIA

 $E ext{-}mail\ address: zdrcvet@yahoo.com}$