Math. Maced. Vol. 7 (2009) 21–28

EXTREMALLY DISCONNECTEDNESS AND SUBMAXIMALITY VIA $(1,2)^*$ -OPEN SETS

M. LELLIS THIVAGAR 1 AND NIRMALA MARIAPPAN 2

Abstract. The aim of this paper is to introduce $(1, 2)^*$ -extremally disconnectedness and $(1, 2)^*$ -submaximality in $(1, 2)^*$ -bitopological spaces and study their properties.

1. INTRODUCTION

Levine [3], Mashhour et al [6] and Njastad [7] have introduced the concepts of semi-open sets, preopen sets and α -open sets respectively. Levine [4] introduced generalised closed sets and studied their properties. Bhattacharya and Lahiri [2] introduced semi-generalised closed sets. Thivagar et al [8] have introduced the concepts of $(1,2)^*$ -semi-open sets, $(1,2)^*$ -generalised closed sets, $(1,2)^*$ -semi-generalised closed sets in bitopological spaces. The aim of this paper is to introduce $(1,2)^*$ -extremally disconnectedness and $(1,2)^*$ -submaximality in $(1,2)^*$ -bitopological spaces and study their properties.

2. Preliminaries

Throughout this paper (X, τ_1, τ_2) represents a bitopological space on which no separation axioms are assumed unless otherwise mentioned.

Definition 2.1. [8] A subset S of a bitopological space (X, τ_1, τ_2) is said to be $\tau_{1,2}$ -open if $S = A \cup B$ where $A \in \tau_1$ and $B \in \tau_2$. A subset S of X is said to be $\tau_{1,2}$ -closed if the complement of S is $\tau_{1,2}$ -open.

Definition 2.2. [8] Let S be a subset of X. Then

- (i) The $\tau_{1,2}$ -interior of S, denoted by $\tau_{1,2}$ -int(S), is defined by $\cup \{G/G \subset S \text{ and } G \text{ is } \tau_{1,2}\text{-open } \}.$
- (ii) The $\tau_{1,2}$ -closure of S, denoted by $\tau_{1,2}$ -cl(S), is defined by $\cap \{F/S \subset F \text{ and } F \text{ is } \tau_{1,2}\text{-closed } \}$.

Remark 2.1.

(i) $\tau_{1,2}$ -int(S) is $\tau_{1,2}$ -open for each $S \subset X$ and $\tau_{1,2}$ -cl(S) is $\tau_{1,2}$ -closed for each $S \subset X$.

21

²⁰¹⁰ Mathematics Subject Classification. 54E55, 54D10.

Key words and phrases. $(1, 2)^*$ -extremally disconnectedness and $(1, 2)^*$ -submaximality.

- (ii) A set $S \subset X$ is $\tau_{1,2}$ -open iff $S = \tau_{1,2}$ -int(S) and is $\tau_{1,2}$ -closed iff $S = \tau_{1,2}$ cl(S).
- (iii) $\tau_{1,2}$ -int $(S) = int_{\tau_1}(S) \cup int_{\tau_2}(S)$ and $\tau_{1,2}$ -cl(S) = cl_{τ_1}(S) \cap cl_{τ_2}(S) for any S \subset X
- (iv) For any family $\{S_i | i \in I\}$ of subsets of X we have
 - $(a) \bigcup_{i} \tau_{1,2} \operatorname{-int}(S_i) \subset \tau_{1,2} \operatorname{-int}(\bigcup_{i} S_i)$ $(b) \bigcup_{i} \tau_{1,2} \operatorname{-cl}(S_i) \subset \tau_{1,2} \operatorname{-cl}(\bigcup_{i} S_i)$

 - (c) $\tau_{1,2}$ -int $(\cap S_i) \subset \cap \tau_{1,2}$ -int (S_i)

(d)
$$\tau_{1,2}$$
-cl($\cap S_i$) $\subset \cap \tau_{1,2}$ -cl(S_i)

(d) $\tau_{1,2}\text{-}cl(\bigcap_i S_i) \subset \bigcap_i \tau_{1,2}\text{-}cl(S_i)$ (v) $\tau_{1,2}\text{-}open \ sets \ need \ not \ form \ a \ topology.$

We recall the following definitions which are useful in the sequel.

Definition 2.3. [8] A subset A of a bitopological space (X, τ_1, τ_2) is called

- (i) $(1,2)^*$ -semi-open if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A))
- (*ii*) $(1,2)^*$ -preopen if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A))
- (*iii*) $(1,2)^*$ - α -open if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)))
- (iv) $(1,2)^*$ -semi-closed if A^c is $(1,2)^*$ semi-open.
- (v) $(1,2)^*$ -generalised closed (briefly $(1,2)^*$ -g-closed) if $\tau_{1,2}$ -cl(A) $\subset U$ whenever $A \subset U$ and U is $\tau_{1,2}$ -open in X.
- (vi) $(1,2)^*$ -semi-generalised closed (briefly $(1,2)^*$ -sq-closed) if $(1,2)^*$ -scl $(A) \subset U$ whenever $A \subset U$ and U is $(1,2)^*$ -semi-open in X.
- (vii) $(1,2)^*$ -sg-open if A^c is $(1,2)^*$ -sg-closed.

Definition 2.4. [8]

- (i) The $(1,2)^*$ -semi-closure of a subset A of X, denoted by $(1,2)^*$ -scl(A)), is defined to be the intersection of all $(1,2)^*$ -semi-closed sets containing A.
- (ii) The $(1,2)^*$ -semi-interior of a subset A of X, denoted by $(1,2)^*$ -sint(A), is defined to be the union of all $(1,2)^*$ -semi-open sets contained in A.

Remark 2.2.

- (i) Since arbitrary union (resp. intersection) of $(1,2)^*$ -semi-open (resp. $(1,2)^*$ semi-closed) sets is $(1,2)^*$ -semi-open (resp. $(1,2)^*$ -semi-closed), $(1,2)^*$ -sint(A) $(resp.(1,2)^*$ -scl(A)) is $(1,2)^*$ -semi-open $(resp.(1,2)^*$ -semi-closed).
- (ii) A subset A of X is $(1,2)^*$ -semi-open (resp. $(1,2)^*$ -semi-closed) if and only if $(1,2)^*$ -sint(A) (resp. $(1,2)^*$ -scl(A)) = A.

3. $(1,2)^*$ -EXTREMALLY DISCONNECTEDNESS

The following results in $(1,2)^*$ -bitopological spaces will be useful for the charecterisation of $(1, 2)^*$ -extremally disconnected bitopological spaces.

Definition 3.1. A subset A of a bitopological space (X, τ_1, τ_2) is called

- (i) $(1,2)^*$ -nowhere dense if $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A)) = \phi$.
- (*ii*) $(1,2)^*$ -dense if $\tau_{1,2}$ -cl(A) = X.

22

Theorem 3.1. Every singleton set $\{x\}$ of a bitopological space (X, τ_1, τ_2) is either $(1,2)^*$ -nowhere dense or $(1,2)^*$ -preopen.

Proof. Let $x \in X$. If $\{x\}$ is not $(1,2)^*$ -nowhere dense then $G = \tau_{1,2}$ -int $(\tau_{1,2})^*$ -nowhere dense then $G = \tau_{1,2}$ -nowhere $G = \tau_{1,2}$ -nowhere G $cl(\lbrace x \rbrace) \neq \phi$. Suppose x is not in G. Then G^c contains x. Since G^c is $\tau_{1,2}$ -closed, $G^c \supseteq \tau_{1,2}$ -cl($\{x\}$) $\supseteq G$ which implies $G = \phi$, a contradiction. Hence $\{x\} \subseteq \tau_{1,2}$ - $\operatorname{int}(\tau_{1,2}\operatorname{-cl}(\{x\}))$ or $\{x\}$ is $(1,2)^*$ -preopen.

Theorem 3.1 provides a decomposition $X = X_1 \cup X_2$ of (X, τ_1, τ_2) where $X_1 =$ $\{x \in X : \{x\} \text{ is } (1,2)^*\text{-nowhere dense}\}\ \text{and}\ X_2 = \{x \in X : \{x\} \text{ is } (1,2)^*\text{-preopen}\}.$ This decomposition is useful in proving the following result.

Theorem 3.2. Let (X, τ_1, τ_2) be a bitopological space and A be a subset of X. Then

(i) A is $(1,2)^*$ -sq -closed if and only if $X_1 \cap (1,2)^*$ -scl(A) $\subseteq A$. (*ii*) $(1,2)^*$ -*pcl*(*A*) $\subseteq X_1 \cup A$.

Proof. (i) Let $A \subseteq X$ be $(1,2)^*$ -sg-closed and let $x \in X_1 \cap (1,2)^*$ -scl(A). Now $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $\{x\}) = \phi$ implies $\{x\}$ is $(1,2)^*$ -semi-closed. If x is not in A then $A \subseteq \{x\}^c$, a $(1,2)^*$ -semi-open set. Since A is $(1,2)^*$ -sg-closed, $(1,2)^*$ -scl $(A) \subseteq \{x\}^c$ which implies $x \notin (1,2)^*$ -scl(A), a contradiction. Hence $x \in A$ and $X_1 \cap (1,2)^*$ $scl(A) \subseteq A$. Conversely let $X_1 \cap (1,2)^*$ - $scl(A) \subseteq A$. Let U be any $(1,2)^*$ -semiopen set containing A. It is enough if we prove that $X_2 \cap (1,2)^*$ -scl $(A) \subseteq U$. Let $x \in X_2 \cap (1,2)^*$ -scl(A). $\{x\}$ is $(1,2)^*$ -preopen implies $\{x\} \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $\{x\})$ = G. Suppose x is not in U. Then x is in U^c. Therefore $G = \tau_{1,2}$ -int $(\tau_{1,2})$ $cl{x} \subseteq \tau_{1,2}-int(\tau_{1,2}-cl(U^c) \subseteq U^c \text{ since } U^c \text{ is } (1,2)^*-semi-closed. Then <math>G \cap U = \phi$ which implies $G \cap A = \phi$. This is a contradiction since, $x \in G$, a $(1,2)^*$ -semi-open set and $x \in (1,2)^*$ -scl(A) imply $G \cap A \neq \phi$.

(ii): Let $x \in (1,2)^*$ -pcl(A). Suppose $x \notin X_1$. Then $\{x\}$ is $(1,2)^*$ -preopen and thus $\{x\} \cap A \neq \phi$. This implies $x \in A$.

Every $(1,2)^*$ -sg-closed subset of a bitopological space (X,τ_1,τ_2) is $(1,2)^*$ -gsclosed. The converse is not true in general.

Definition 3.2. A bitopological space (X, τ_1, τ_2) is said to be a $(1, 2)^*$ - T_{gs} -space if every $(1,2)^*$ -gs-closed subset of X is $(1,2)^*$ -sg-closed.

The following result characterizes the class of $(1,2)^*$ - T_{qs} -spaces.

Theorem 3.3. The following are equivalent for a bitopological space (X, τ_1, τ_2) . (i) (X, τ_1, τ_2) is a $(1, 2)^*$ - T_{as} -space.

(ii) Every singleton $\{x\}$ of X is either $\tau_{1,2}$ -closed or $(1,2)^*$ -preopen.

Proof. (i) \Rightarrow (ii) Let $x \in X_1$ and suppose that $\{x\}$ is not $\tau_{1,2}$ -closed. Then $X - \{x\}$ is $(1, 2)^*$ -gs-closed, $(1, 2)^*$ -dense and $(1, 2)^*$ -semi-open. Since (X, τ_1, τ_2) is a $(1, 2)^*$ - T_{gs} -space, $X - \{x\}$ is $(1, 2)^*$ -sg-closed. Hence $X - \{x\} \supseteq X_1 \cap (1, 2)^*$ -scl $(X - \{x\})$ $= X_1 \cap X = X_1$ or $x \notin X_1$, a contradiction.

(ii) \Rightarrow (i): Let A be $(1,2)^*$ -gs-closed and let $x \in X_1 \cap (1,2)^*$ -scl(A). Then $\{x\}$ is

 $\tau_{1,2}$ -closed. If $x \notin A$, then $A \subseteq X - \{x\}$, a $\tau_{1,2}$ -open set. Since A is $(1,2)^*$ -gs-closed, $(1,2)^*$ -scl $(A) \subseteq X - \{x\}$, a contradiction.

Now let us define $(1, 2)^*$ -extremally disconnected bitopological spaces.

Definition 3.3. A bitopological space (X, τ_1, τ_2) is said to be $(1, 2)^*$ -extremally disconnected if the $\tau_{1,2}$ -closure of every $\tau_{1,2}$ -open subset of X is $\tau_{1,2}$ -open.

Remark 3.1. If a bitopological space (X, τ_1, τ_2) is $(1, 2)^*$ -extremally disconnected, then $(1, 2)^*$ - $\alpha O(X, \tau_1, \tau_2) = (1, 2)^*$ - $SO(X, \tau_1, \tau_2)$ since $\tau_{1,2}$ - $int(\tau_{1,2}$ - $int(A))) = \tau_{1,2}$ - $cl(\tau_{1,2}$ -int(A)).

Theorem 3.4. If $(1,2)^*$ -SO (X,τ_1,τ_2) of a bitopological space (X,τ_1,τ_2) forms a topology then (X,τ_1,τ_2) is $(1,2)^*$ -extremally disconnected.

Proof. Suppose (X, τ_1, τ_2) is not $(1, 2)^*$ -extremally disconnected, then there exists a $\tau_{1,2}$ -open set A such that $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A)) \neq \tau_{1,2}$ -cl(A). Let $x \in \tau_{1,2}$ -cl $(A) - \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)). Let $B = \{x\} \cup \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) and $C = (\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A)))^c = \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A^c))$. Now $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(B)) \supseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A))) = \tau_{1,2}$ -cl $(A) \supseteq \{x\}$. Also $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(C)) = \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A^c))) = \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A^c)) = C \supseteq \{x\}$. Thus B and C are $(1,2)^*$ -semi-open sets, but $B \cap C = \{x\}$ is not $(1,2)^*$ -semi-open. □

The converse of Theorem 3.4 need not be true as we see in the following example.

Example 3.1. Let $X = \{a, b, c\}$; $\tau_1 = \{\phi, \{a\}, \{a, b\}, X\}; \tau_2 = \{\phi, \{b, c\}, X\};$ $\tau_{1,2}$ -open sets $= \{\phi, \{a\}, \{a, b\}, \{b, c\}, X\} = (1, 2)^*$ -SO $(X, \tau_1, \tau_2);$ (X, τ_1, τ_2) is $(1, 2)^*$ -extremally disconnected but $(1, 2)^*$ -SO (X, τ_1, τ_2) does not form a topology.

Theorem 3.5. If the intersection of any two $(1,2)^*$ -sg-open sets of a bitopological space (X, τ_1, τ_2) is $(1,2)^*$ -sg-open then (X, τ_1, τ_2) is $(1,2)^*$ -extremally disconnected.

Proof. Suppose (X, τ_1, τ_2) is not $(1, 2)^*$ -extremally disconnected. Then there is a $\tau_{1,2}$ -open set *A* such that $\tau_{1,2}$ -int($\tau_{1,2}$ -cl(*A*)) ≠ $\tau_{1,2}$ -cl(*A*). Let $x \in \tau_{1,2}$ -cl(*A*) − $\tau_{1,2}$ -int($\tau_{1,2}$ -cl(*A*)). If $B = A \cup \{x\}$ and $C = (X - \tau_{1,2}$ -cl(*A*)) ∪ $\{x\}$, then *B* and *C* are $(1, 2)^*$ -semi-open and hence $(1, 2)^*$ -seg-open. By assumption $B \cap C = \{x\}$ is $(1, 2)^*$ -seg-open. Then $D = X - \{x\}$ is $(1, 2)^*$ -seg-closed. Now $\tau_{1,2}$ -int($\tau_{1,2}$ -cl($\{x\}$))) ⊆ $\tau_{1,2}$ -cl(*A*). Also $x \in (\tau_{1,2}$ -int($\tau_{1,2}$ -cl(*A*)))^{*c*} = $\tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl($\{x\}$))) ⊆ $\tau_{1,2}$ -int($\tau_{1,2}$ -cl($\{x\}$))) = ϕ and $x \in X_1$. Also $\tau_{1,2}$ -int($\tau_{1,2}$ -cl(*(D*)) = $\tau_{1,2}$ -int($\tau_{1,2}$ -cl($\{x\}$))^{*c*} = ($\tau_{1,2}$ -cl($\tau_{1,2}$ -int($\{x\}$)))^{*c*} = (ϕ)^{*c*} = *X*. Therefore $(1, 2)^*$ -scl(*D*) = $D \cup \tau_{1,2}$ -int($\tau_{1,2}$ -cl(*D*)) = *X*. Since *D* is $(1, 2)^*$ -sg-closed, $X_1 \cap (1, 2)^*$ -scl(*D*) = $X_1 \subseteq D = X - \{x\}$, a contradiction.

Definition 3.4. A bitopological space (X, τ_1, τ_2) is said to be a DRT - space if $int_{\tau_1}F = int_{\tau_2}F$ for every $\tau_{1,2}$ -closed subset F of X.

Remark 3.2. If (X, τ_1, τ_2) is a DRT bitopological space, then

EXRTEMALLY DISCONNECTEDNESS AND SUBMAXIMALITY VIA $(1,2)^*$ -OPEN SETS 25

- (i) $(1,2)^*$ -pcl $(A) = A \cup \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) and
- $(1,2)^*$ -pint $(A) = A \cap \tau_{1,2}$ -int $(\tau_{1,2}$ -cl (A)).
- (*ii*) $(1,2)^*$ -spcl $(A) = A \cup \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A))) and
- $(1,2)^*-spint (A) = A \cap \tau_{1,2}-cl(\tau_{1,2}-int(\tau_{1,2}-cl(A))).$
- (iii) If G is $\tau_{1,2}$ -open, then $\tau_{1,2}$ -cl($G \cap D$) $\supseteq G \cap \tau_{1,2}$ -cl(D).

Theorem 3.6. The following are equivalent in a DRT bitopological space (X, τ_1, τ_2) .

- (i) (X, τ_1, τ_2) is $(1, 2)^*$ -extremally disconnected.
- (ii) Every $(1,2)^*$ -semi-preclosed subset of X is $(1,2)^*$ -preclosed.
- (iii) Every $(1,2)^*$ -sg-closed subset of X is $(1,2)^*$ -preclosed.
- (iv) Every $(1,2)^*$ -semi-closed subset of X is $(1,2)^*$ -preclosed.
- (v) Every $(1,2)^*$ -semi-closed subset of X is $(1,2)^*$ - α -closed.
- (vi) Every $(1,2)^*$ -semi-closed subset of X is $(1,2)^*$ -g α -closed.

Proof. (i) \Rightarrow (ii) If A is $(1,2)^*$ -semi-preclosed, then $A = (1,2)^*$ -spcl $(A) = A \cup \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A))) = A \cup \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) since X is $(1,2)^*$ -extremally disconnected. Hence $A = (1,2)^*$ -pcl(A) or A is $(1,2)^*$ -preclosed.

(ii) \Rightarrow (iii) Let A be $(1, 2)^*$ -sg-closed. It is enough to prove that A is $(1, 2)^*$ -semipreclosed. Let $x \in (1, 2)^*$ -spcl(A). Case(i): $\{x\}$ is $(1, 2)^*$ -preopen. Then $\{x\}$ is $(1, 2)^*$ -semi-preopen and since $x \in (1, 2)^*$ -spcl(A), $\{x\} \cap A \neq \phi$. Hence $x \in A$. Case(ii): $\{x\}$ is nowhere dense. Then $\{x\}$ is $(1, 2)^*$ -semi-closed which implies $X - \{x\}$ is $(1, 2)^*$ -semi-open. Assume that $x \notin A$. Then $A \subseteq X - \{x\}$ and A is $(1, 2)^*$ -sg-closed imply $(1, 2)^*$ -spcl $(A) \subseteq (1, 2)^*$ -scl $(A) \subseteq X - \{x\}$. Hence $x \notin (1, 2)^*$ -spcl(A), a contradiction. Therefore $x \in A$. Thus in both the cases , $A = (1, 2)^*$ -spcl(A) or A is $(1, 2)^*$ -semi-preclosed.

 $(iii) \Rightarrow (iv), (iv) \rightarrow (v), (v) \rightarrow (vi)$ are obvious.

(iv) \Rightarrow (i): Let A be $\tau_{1,2}$ -open. Consider $B = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A))). B is $(1,2)^*$ -regular open and therefore $(1,2)^*$ -semi-closed and $(1,2)^*$ - α -open. By (vi) B is $(1,2)^*$ -g α -closed which implies $B = (1,2)^*$ - α cl $(B) = \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(B))). Hence $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A))) = \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) or $\tau_{1,2}$ -cl $(\tau_{1,2}$ -cl $(A)) = \tau_{1,2}$ -cl(A). Hence (X, τ_1, τ_2) is $(1,2)^*$ -extremally disconnected. \Box

4. $(1,2)^*$ -SUBMAXIMALITY

Now let us define $(1, 2)^*$ -submaximal bitopological spaces.

Definition 4.1. A bitopological space (X, τ_1, τ_2) is said to be $(1, 2)^*$ -submaximal (resp. $(1, 2)^*$ -g-submaximal) if every $(1, 2)^*$ -dense subset of X is $\tau_{1,2}$ -open (resp. $(1, 2)^*$ -g-open).

Remark 4.1. Every $(1,2)^*$ -submaximal space is $(1,2)^*$ -g-submaximal but not conversely.

Example 4.1. Let $X = \{a, b, c\}$; $\tau_1 = \{\phi, \{a\}, X\}$; $\tau_2 = \{\phi, \{b, c\}, X\}$; $\tau_{1,2}$ -open sets $= \{\phi, \{a\}, \{b, c\}, X\}$; (X, τ_1, τ_2) is $(1, 2)^*$ -g-submaximal but not $(1, 2)^*$ -submaximal.

Definition 4.2. A bitopological space (X, τ_1, τ_2) is said to be $(1, 2)^*$ -sg-submaximal (resp. $(1, 2)^*$ - α -submaximal) if every $(1, 2)^*$ -dense subset of X is $(1, 2)^*$ -sg-open (resp. $(1, 2)^*$ - α -open).

5. Applications

Now let us see some applications of $(1,2)^*$ -extremally disconnectedness and $(1,2)^*$ -submaximality in bitopological spaces.

Theorem 5.1. Let (X, τ_1, τ_2) be a DRT bitopological space in which every $(1, 2)^*$ -semi-preclosed set is $(1, 2)^*$ -g α -closed. Then $(X, \tau_1^{\alpha}, \tau_2^{\alpha})$ is $(1, 2)^*$ -extremally disconnected and $(1, 2)^*$ -g-submaximal.

Proof. If every $(1,2)^*$ -semi-preclosed subset of X is $(1,2)^*$ -g α -closed, then every $(1,2)^*$ -semi-closed subset of X is $(1,2)^*$ -g α -closed and hence by Theorem 3.6, (X,τ_1,τ_2) is $(1,2)^*$ -extremally disconnected. Now $(1,2)^*$ - $\alpha cl((1,2)^*$ - $\alpha int(A)) = \tau_{1,2}$ -cl $((1,2)^*$ - $\alpha int(A)) = \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $((1,2)^*$ - $\alpha int(A))$. Also $(1,2)^*$ - $\alpha int((1,2)^*$ - $\alpha cl(A)) = \tau_{1,2}$ -int $((1,2)^*$ - $\alpha cl(A)) = \tau_{1,2}$ -int $((1,2)^*$ - $\alpha cl(A))$. Hence

 $\begin{array}{ll} (1,2)^{*} - \alpha \mathrm{int}((1,2)^{*} - \alpha \mathrm{int}(A))) &= \tau_{1,2} - \mathrm{int}((1,2)^{*} - \alpha \mathrm{int}(A))) = \\ \tau_{1,2} - \mathrm{int}(\tau_{1,2} - \mathrm{cl}((1,2)^{*} - \alpha \mathrm{int}(A))) &= \tau_{1,2} - \mathrm{int}(\tau_{1,2} - \mathrm{cl}(\tau_{1,2} - \mathrm{int}((1,2)^{*} - \alpha \mathrm{int}(A)))) = \\ \tau_{1,2} - \mathrm{int}(\tau_{1,2} - \mathrm{cl}((1,2)^{*} - \alpha \mathrm{int}(A))) &= (1,2)^{*} - \alpha \mathrm{cl}((1,2)^{*} - \alpha \mathrm{int}(A)) \text{ for every subset } A \text{ of } X.\\ \text{Therefore } (X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}) \text{ is } (1,2)^{*} - \alpha \mathrm{cl}((1,2)^{*} - \alpha \mathrm{int}(A)) \text{ for every subset } A \text{ of } X.\\ \text{Therefore } (X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}) \text{ is } (1,2)^{*} - \alpha \mathrm{cl}(A) = X. \text{ Since } \\ \tau_{1,2} - \mathrm{cl}(A) = X. \text{ This implies } \\ \tau_{1,2} - \mathrm{cl}(\tau_{1,2} - \mathrm{cl}(A))) &= X \text{ and therefore } A \text{ is } \\ (1,2)^{*} - \mathrm{semi-preopen } \text{ or } X - A \text{ is } (1,2)^{*} - \mathrm{semi-preclosed. So } A^{c} \text{ is } (1,2)^{*} - \mathrm{gaclosed} \\ \text{and } A \text{ is } (1,2)^{*} - \mathrm{gopen } \text{ in } (X, \tau_{1}^{\alpha}, \tau_{2}^{\alpha}). \end{array}$

Lemma 5.1. (X, τ_1, τ_2) and $(X, \tau_1^{\alpha}, \tau_2^{\alpha})$ share the classes of dense subsets.

Proof. It has been proved in Theorem 5.1 that, if A is dense in $(X, \tau_1^{\alpha}, \tau_2^{\alpha})$ then A is dense in (X, τ_1, τ_2) . Conversely let A be dense in (X, τ_1, τ_2) . Then $\tau_{1,2}\text{-cl}(A) = X$ which implies $\tau_{1,2}\text{-cl}(\tau_{1,2}\text{-int}(\tau_{1,2}\text{-cl}(A))) = X$. Therefore $(1,2)^* - \alpha \text{cl}(A) = A \cup \tau_{1,2}\text{-cl}(\tau_{1,2}\text{-int}(\tau_{1,2}\text{-cl}(A))) = X$ or A is dense in $(X, \tau_1^{\alpha}, \tau_2^{\alpha})$.

Remark 5.1. Since (X, τ_1, τ_2) and $(X, \tau_1^{\alpha}, \tau_2^{\alpha})$ share the classes of dense subsets (X, τ_1, τ_2) is $(1, 2)^*$ - α -submaximal if and only if $(X, \tau_1^{\alpha}, \tau_2^{\alpha})$ is $(1, 2)^*$ -submaximal.

Lemma 5.2. (X, τ_1, τ_2) and $(X, \tau_1^{\alpha}, \tau_2^{\alpha})$ share the classes of $(1, 2)^*$ -sg-open subsets.

Proof. Let A be any (1,2)*-sg-closed set in (X, τ₁, τ₂) and U be any (1,2)*-semiopen set in (X, τ₁^α, τ₂^α) containing A. Then U ⊆ (1,2)*-αcl((1,2)*-αint(U)) = τ_{1,2}-cl(τ_{1,2}-int((1,2)*-αint(U))) ⊆ τ_{1,2}-cl(τ_{1,2}-int(U)), which implies U is (1,2)*semi-open in (X, τ₁, τ₂). Since A is (1,2)*-sg-closed set in (X, τ₁, τ₂), (1,2)*scl(A) ⊆ U. Now (1,2)*-αint((1,2)*-αcl(A)) = τ_{1,2}-int(τ_{1,2}-cl((1,2)*-αcl(A))) = τ_{1,2}-int(τ_{1,2}-cl(A ∪ τ_{1,2}-cl(τ_{1,2}-int(τ_{1,2}-cl(A))))) ⊆ τ_{1,2}-int(τ_{1,2}-cl(A)) ⊆ (1,2)*scl(A) ⊆ U. Hence A is (1,2)*-sg-closed in (X, τ₁^α, τ₂^α). Conversely let A be (1,2)*-sg-closed in (X, τ₁^α, τ₂^α) and U be any (1,2)*-semi-open set in (X, τ₁, τ₂) containing A. Then (1,2)*-αcl((1,2)*-αint(U)) = τ_{1,2}-cl(τ_{1,2}-int((1,2)*-αint(U))) = τ_{1,2}-cl(τ_{1,2}-int(U ∩ τ_{1,2}-int(τ_{1,2}-cl(τ_{1,2}-int(U))))) ⊇ τ_{1,2}-cl(τ_{1,2}-int(U)) ⊇ U. Hence U is (1,2)*-semi-open set in (X, τ₁^α, τ₂^α) is contained in U. That is A ∪ (1,2)*-αint((1,2)*αcl(A)) ⊆ U. Therefore τ_{1,2}-int(τ_{1,2}-cl(A)) ⊆ τ_{1,2}-cl((1,2)*-αcl(A)) = $(1,2)^*-\alpha \operatorname{int}((1,2)^*-\alpha \operatorname{cl}(A)) \subseteq U$. This implies $(1,2)^*-\operatorname{scl}(A) = A \cup \tau_{1,2}-\operatorname{int}(\tau_{1,2}-\operatorname{cl}(A)) \subseteq U$. Hence A is $(1,2)^*$ -sg-closed in (X,τ_1,τ_2) .

Theorem 5.2. A bitopological space (X, τ_1, τ_2) is $(1, 2)^*$ -sg-submaximal if and only if the bitopological space $(X, \tau_1^{\alpha}, \tau_2^{\alpha})$ is $(1, 2)^*$ -sg-submaximal.

Proof follows from Lemmas 5.1 and 5.2.

Now let us see some properties of the $(1,2)^*$ -preopen sets in a $(1,2)^*$ -submaximal space. We first prove some simple characterisation of $(1,2)^*$ -preopen sets in a DRT bitopological space.

Theorem 5.3. For any subset S of a DRT bitopological space (X, τ_1, τ_2) the following are equivalent

- (i) $S \in (1,2)^* PO(X)$.
- (ii) There is a $(1,2)^*$ -regular open set $G \subseteq X$ such that $S \subseteq G$ and $\tau_{1,2}$ -cl $(S) = \tau_{1,2}$ -cl(G).
- (iii) S is the intersection of a $(1,2)^*$ -regular open set and a $(1,2)^*$ -dense set.
- (iv) S is the intersection of a $\tau_{1,2}$ open set and a $(1,2)^*$ -dense set.

Proof. (i) \Rightarrow (ii) Let $S \in (1,2)^*$ -PO(X) and $G = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(S)). Then G is $(1,2)^*$ -regular open with $S \subseteq G$. Now $\tau_{1,2}$ -cl $(G) = \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(S))) \subseteq \tau_{1,2}$ -cl(G). Hence $\tau_{1,2}$ -cl $(G) = \tau_{1,2}$ -cl(S).

(ii) \Rightarrow (iii) Let $D = S \cup (X - G)$. Then $\tau_{1,2}$ -cl $(D) \supseteq \tau_{1,2}$ -cl $(S) \cup \tau_{1,2}$ -cl $(G^c) \supseteq \tau_{1,2}$ cl $(S) \cup G^c = \tau_{1,2}$ -cl $(G) \cup G^c \supseteq X$. Therefore $\tau_{1,2}$ -cl(D) = X or D is $(1,2)^*$ -dense in X. Also $G \cap D = S$.

(iii) \Rightarrow (iv): It follows since every $(1,2)^*$ -regular open set is $\tau_{1,2}$ -open. (iv) \Rightarrow (i): Suppose $S = G \cap D$ with G, $\tau_{1,2}$ -open and D, $(1,2)^*$ -dense. Then $\tau_{1,2}$ -cl $(S) = \tau_{1,2}$ -cl $(G \cap D) \supseteq G \cap \tau_{1,2}$ -cl $(D) \supseteq G \cap X = G$. Hence $\tau_{1,2}$ -cl $(S) \supseteq \tau_{1,2}$ -cl $(G) \supseteq \tau_{1,2}$ -cl $(G) = \tau_{1,2}$ -cl(G). Hence $S \subseteq G \subseteq \tau_{1,2}$ -cl $(G) \subseteq \tau_{1,2}$ -cl(S) which imply $S \subseteq G = \tau_{1,2}$ -int $(G) \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(S)). Hence S is $(1,2)^*$ -preopen. \Box

Theorem 5.4. Let (X, τ_1, τ_2) be a bitopological space. Then

(i) $(1,2)^*$ -SO $(X,\tau_1,\tau_2) = (1,2)^*$ -SO $(X,\tau_1^{\alpha},\tau_2^{\alpha})$.

(*ii*) $(1,2)^* - PO(X,\tau_1,\tau_2) = (1,2)^* - PO(X,\tau_1^{\alpha},\tau_2^{\alpha}).$

(*iii*) $(1,2)^* - \alpha O(X,\tau_1,\tau_2) = (1,2)^* - \alpha O(X,\tau_1^\alpha,\tau_2^\alpha).$

Proof. (i) is proved in Lemma 5.2.

(ii) Let $A \in (1,2)^*$ -PO (X, τ_1, τ_2) . Now $(1,2)^*$ - α int $((1,2)^*$ - α cl $(A)) = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $((1,2)^*$ - α cl $(A))) \supseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A)) \supseteq A$. Therefore $A \in (1,2)^*$ -PO $(X, \tau_1^{\alpha}, \tau_2^{\alpha})$. Let $A \in (1,2)^*$ -PO $(X, \tau_1^{\alpha}, \tau_2^{\alpha})$. Then $A \subseteq (1,2)^*$ - α int $((1,2)^*$ - α cl $(A)) \subseteq (1,2)^*$ - α int $(\tau_{1,2}$ -cl $(A)) = \tau_{1,2}$ -cl $(A) \cap \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A)))) = \tau_{1,2}$ -cl $(A) \cap \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A))) = \tau_{1,2}$ -cl $(A) \cap \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)). Therefore $A \in (1,2)^*$ -PO (X, τ_1, τ_2) . Hence $(1,2)^*$ -PO $(X, \tau_1, \tau_2) = (1,2)^*$ -PO $(X, \tau_1^{\alpha}, \tau_2^{\alpha})$.

(iii) $(1,2)^* - \alpha O(X,\tau_1,\tau_2) = (1,2)^* - \mathrm{SO}(X,\tau_1,\tau_2) \cap (1,2)^* - \mathrm{PO}(X,\tau_1,\tau_2) = (1,2)^* - \mathrm{SO}(X,\tau_1^{\alpha},\tau_2^{\alpha}) \cap (1,2)^* - \mathrm{PO}(X,\tau_1^{\alpha},\tau_2^{\alpha}) = (1,2)^* - \alpha O(X,\tau_1^{\alpha},\tau_2^{\alpha}).$

Theorem 5.5. Let (X, τ_1, τ_2) be a bitopological space, $S \in (1, 2)^*$ - $PO(X, \tau_1, \tau_2)$ and $x \in \tau_{1,2}$ - $cl(S) - \tau_{1,2}$ - $int(\tau_{1,2}$ -cl(S)). Then $S \cup \{x\} \notin (1, 2)^*$ - $PO(X, \tau_1, \tau_2)$. In particular if G is $(1,2)^*$ -regular open in (X,τ_1,τ_2) and $x \in \tau_{1,2}$ -cl(G) - G, then $G \cup \{x\} \notin (1,2)^*$ -PO (X,τ_1,τ_2) .

 $\begin{array}{l} \textit{Proof. Since } x \in \tau_{1,2}\text{-cl}(S), \ \tau_{1,2}\text{-cl}(S) \supseteq \tau_{1,2}\text{-cl}(S \cup \{x\}) \supseteq \tau_{1,2}\text{-cl}(S). \ \text{Therefore } \\ \tau_{1,2}\text{-cl}(S) = \tau_{1,2}\text{-cl}(S \cup \{x\}) \text{ which implies } \tau_{1,2}\text{-int}(\tau_{1,2}\text{-cl}(S \cup \{x\})) = \tau_{1,2}\text{-int}(\tau_{1,2}\text{-cl}(S)). \\ \text{Since } x \notin \tau_{1,2}\text{-cl}(S), \ S \cup \{x\}) \nsubseteq \tau_{1,2}\text{-int}(\tau_{1,2}\text{-cl}(S \cup \{x\})) \text{ and } S \cup \{x\} \notin \\ (1,2)^*\text{-PO}(X, \tau_1, \tau_2). \end{array}$

Theorem 5.6. If (X, τ_1, τ_2) is a $(1, 2)^*$ -submaximal DRT bitopological space, then any $(1, 2)^*$ -preopen set is the intersection of two $\tau_{1,2}$ -open sets.

Proof. By Theorem 5.3, if A is $(1,2)^*$ -preopen then $A = G \cap D$ where G is $\tau_{1,2}$ open and D is $(1,2)^*$ -dense in (X,τ_1,τ_2) . Since (X,τ_1,τ_2) is $(1,2)^*$ -submaximal, D is $\tau_{1,2}$ -open. Hence A is the intersection of two $\tau_{1,2}$ -open sets.

Theorem 5.7. If in a bitopological space (X, τ_1, τ_2) , $(1, 2)^* - PO(X, \tau_1, \tau_2) = \tau_{1,2}$ open sets, then (X, τ_1, τ_2) is $(1, 2)^*$ -submaximal.

Proof. Let $(1,2)^*$ -PO $(X,\tau_1,\tau_2) = \tau_{1,2}$ -open sets. Let D be $(1,2)^*$ -dense in (X,τ_1,τ_2) . Then $\tau_{1,2}$ -cl(D) = X. This implies $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(D)) = X \supseteq D$. Therefore D is $(1,2)^*$ -preopen which implies D is $\tau_{1,2}$ -open. Hence (X,τ_1,τ_2) is $(1,2)^*$ -submaximal.

Converse of Theorem 5.7 is not true in general.

Example 5.1. Let $X = \{a, b, c, d\}$; $\tau_1 = \{\phi, \{d\}, \{a, b, d\}, X\}$ $\tau_2 = \{\phi, \{c\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, X\};$ $\tau_{1,2}$ -open sets $= \{\phi, \{d\}, \{a, b, d\}, \{c\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, X\}.$ $\tau_{1,2}$ -closed sets $= \{\phi, \{a, b, c\}, \{c\}, \{a, b, d\}, \{a, b\}, \{a\}, \{b\}, X\}.$ (X, τ_1, τ_2) is $(1, 2)^*$ -submaximal but $(1, 2)^*$ -PO $(X, \tau_1, \tau_2) \neq \tau_{1,2}$ -open sets since $\{b, d\}$ is $(1, 2)^*$ -preopen but not $\tau_{1,2}$ -open.

References

- [1] Andrijevic.D, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
- Bhattacharya, P. and Lahiri, B.K, Semi-generalised closed sets in topology, Indian J. Math., 29(1987),375-382
- Jiling Cao, Maximillion Ganster and Ivan Reily, On sg-closed sets and gα closed sets, Mem. Fac. Kochi. Univ. (Math.), (20)(1999), 1-5.
- [4] Levine, N, Semi-open sets and semi-continuity in topological spaces, Amer.Math. Monthly, 70 (1963), 36-41.
- [5] Levine, N, Generalised closed sets in topology, Rend. circ. Mat. Palermo, 19(1970), 89-96.
- [6] Mashhour,A.S., Abd El-Monsef,M.E. and El Deeb,S, NOn pre continuous and weak pre continuous mappings,Proc.Math.Phys. Soc. Egypt.,53(1982),47-53.
- [7] Njastad,O, On some classes of nearly open sets, Pacific J.Math.15(1965),961-970
- [8] Ravi,O. and Lellis Thivagar,M, On Stronger forms of (1, 2)*-quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra, 14(2004), no.6, 481-492

¹School of Mathematics, Madurai Kamaraj University, Madurai, Tamilnadu, India *E-mail address*: mlthivagar@yahoo.co.in

²Department of Mathematics, Lady Doak College, Madurai-625002, Tamil Nadu, India

 $E\text{-}mail \ address: \texttt{nirmala_mariappan@yahoo.com}$