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EXTREMALLY DISCONNECTEDNESS AND SUBMAXIMALITY

VIA (1, 2)∗-OPEN SETS

M. LELLIS THIVAGAR1 AND NIRMALA MARIAPPAN2

Abstract. The aim of this paper is to introduce (1, 2)∗-extremally discon-

nectedness and (1, 2)∗-submaximality in (1, 2)∗-bitopological spaces and study

their properties.

1. Introduction

Levine [3], Mashhour et al [6] and Njastad [7] have introduced the concepts of
semi-open sets, preopen sets and α-open sets respectively. Levine [4] introduced
generalised closed sets and studied their properties. Bhattacharya and Lahiri
[2] introduced semi-generalised closed sets. Thivagar et al [8] have introduced
the concepts of (1, 2)∗-semi-open sets, (1, 2)∗-generalised closed sets, (1, 2)∗-semi-
generalised closed sets in bitopological spaces. The aim of this paper is to in-
troduce (1, 2)∗-extremally disconnectedness and (1, 2)∗-submaximality in (1, 2)∗-
bitopological spaces and study their properties.

2. Preliminaries

Throughout this paper (X, τ1, τ2) represents a bitopological space on which no
separation axioms are assumed unless otherwise mentioned.

Definition 2.1. [8] A subset S of a bitopological space (X, τ1, τ2) is said to be
τ1,2-open if S = A ∪ B where A ∈ τ1 and B ∈ τ2. A subset S of X is said to be
τ1,2-closed if the complement of S is τ1,2-open.

Definition 2.2. [8] Let S be a subset of X. Then

(i) The τ1,2-interior of S, denoted by τ1,2-int(S), is defined by ∪{G/G ⊂ S and
G is τ1,2-open }.

(ii) The τ1,2-closure of S, denoted by τ1,2-cl(S), is defined by ∩{F/S ⊂ F and F
is τ1,2-closed }.

Remark 2.1.

(i) τ1,2-int(S) is τ1,2-open for each S ⊂ X and τ1,2-cl(S) is τ1,2-closed for each
S ⊂ X.
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(ii) A set S ⊂ X is τ1,2-open iff S = τ1,2-int(S) and is τ1,2-closed iff S = τ1,2-
cl(S).

(iii) τ1,2-int(S) = intτ1(S) ∪ intτ2(S)
and τ1,2-cl(S) = clτ1(S) ∩ clτ2(S) for any S ⊂ X

(iv) For any family {Si/i ∈ I} of subsets of X we have
(a) ∪

i
τ1,2-int(Si) ⊂ τ1,2-int(∪

i
Si)

(b) ∪
i
τ1,2-cl(Si) ⊂ τ1,2-cl(∪

i
Si)

(c) τ1,2-int(∩
i
Si) ⊂ ∩

i
τ1,2-int(Si)

(d) τ1,2-cl(∩
i
Si) ⊂ ∩

i
τ1,2-cl(Si)

(v) τ1,2-open sets need not form a topology.

We recall the following definitions which are useful in the sequel.

Definition 2.3. [8] A subset A of a bitopological space (X, τ1, τ2) is called

(i) (1, 2)∗-semi-open if A ⊆ τ1,2-cl(τ1,2-int(A))
(ii) (1, 2)∗-preopen if A ⊆ τ1,2-int(τ1,2-cl(A))

(iii) (1, 2)∗-α-open if A ⊆ τ1,2-int(τ1,2-cl(τ1,2-int(A)))
(iv) (1, 2)∗-semi-closed if Ac is (1, 2)∗- semi-open.
(v) (1, 2)∗-generalised closed (briefly (1, 2)∗-g-closed) if τ1,2-cl(A) ⊂ U whenever

A ⊂ U and U is τ1,2-open in X.
(vi) (1, 2)∗-semi-generalised closed (briefly (1, 2)∗-sg-closed) if

(1, 2)∗-scl(A) ⊂ U whenever A ⊂ U and U is (1, 2)∗-semi-open in X.
(vii) (1, 2)∗-sg-open if Ac is (1, 2)∗-sg-closed.

Definition 2.4. [8]

(i) The (1, 2)∗-semi-closure of a subset A of X, denoted by (1, 2)∗-scl(A)), is
defined to be the intersection of all (1, 2)∗-semi-closed sets containing A.

(ii) The (1, 2)∗-semi-interior of a subset A of X, denoted by (1, 2)∗-sint(A), is
defined to be the union of all (1, 2)∗-semi-open sets contained in A.

Remark 2.2.

(i) Since arbitrary union (resp. intersection) of (1, 2)∗-semi-open (resp.(1, 2)∗-
semi-closed ) sets is (1, 2)∗-semi-open (resp.(1, 2)∗-semi-closed), (1, 2)∗-sint(A)
(resp.(1, 2)∗-scl(A)) is (1, 2)∗-semi-open (resp.(1, 2)∗-semi-closed).

(ii) A subset A of X is (1, 2)∗-semi-open (resp. (1, 2)∗-semi-closed) if and only
if (1, 2)∗-sint(A) (resp. (1, 2)∗-scl(A)) = A.

3. (1, 2)∗-Extremally Disconnectedness

The following results in (1, 2)∗-bitopological spaces will be useful for the charecter-
isation of (1, 2)∗-extremally disconnected bitopological spaces.

Definition 3.1. A subset A of a bitopological space (X, τ1, τ2) is called

(i) (1, 2)∗-nowhere dense if τ1,2-int(τ1,2-cl(A)) = φ.
(ii) (1, 2)∗-dense if τ1,2-cl(A) = X.
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Theorem 3.1. Every singleton set {x} of a bitopological space (X, τ1, τ2) is either
(1, 2)∗-nowhere dense or (1, 2)∗-preopen.

Proof. Let x ∈ X. If {x} is not (1, 2)∗-nowhere dense then G = τ1,2-int(τ1,2-
cl({x})) 6= φ. Suppose x is not in G. Then Gc contains x. Since Gc is τ1,2-closed,
Gc ⊇ τ1,2-cl({x}) ⊇ G which implies G = φ, a contradiction. Hence {x} ⊆ τ1,2-
int(τ1,2-cl({x})) or {x} is (1, 2)∗-preopen.

Theorem 3.1 provides a decomposition X = X1 ∪ X2 of (X, τ1, τ2) where X1 =
{x ∈ X : {x} is (1, 2)∗-nowhere dense} and X2 = {x ∈ X : {x} is (1, 2)∗-preopen}.
This decomposition is useful in proving the following result. �

Theorem 3.2. Let (X, τ1, τ2) be a bitopological space and A be a subset of X.
Then

(i) A is (1, 2)∗-sg -closed if and only if X1 ∩ (1, 2)∗-scl(A) ⊆ A.
(ii) (1, 2)∗-pcl(A) ⊆ X1 ∪A.

Proof. (i) Let A ⊆ X be (1, 2)∗-sg-closed and let x ∈ X1 ∩ (1, 2)∗-scl(A). Now
τ1,2-int(τ1,2-cl{x}) = φ implies {x} is (1, 2)∗-semi-closed. If x is not in A then
A ⊆ {x}c, a (1, 2)∗-semi-open set. Since A is (1, 2)∗-sg-closed, (1, 2)∗-scl(A) ⊆ {x}c
which implies x /∈ (1, 2)∗-scl(A), a contradiction. Hence x ∈ A and X1 ∩ (1, 2)∗-
scl(A) ⊆ A. Conversely let X1 ∩ (1, 2)∗-scl(A) ⊆ A. Let U be any (1, 2)∗-semi-
open set containing A. It is enough if we prove that X2 ∩ (1, 2)∗-scl(A) ⊆ U . Let
x ∈ X2 ∩ (1, 2)∗-scl(A). {x} is (1, 2)∗-preopen implies {x} ⊆ τ1,2-int(τ1,2-cl{x})
= G. Suppose x is not in U . Then x is in U c. Therefore G = τ1,2-int(τ1,2-
cl{x}) ⊆ τ1,2-int(τ1,2-cl(U c) ⊆ U c since U c is (1, 2)∗-semi-closed. Then G∩U = φ
which implies G∩A = φ. This is a contradiction since, x ∈ G, a (1, 2)∗-semi-open
set and x ∈ (1, 2)∗-scl(A) imply G ∩A 6= φ.
(ii): Let x ∈ (1, 2)∗-pcl(A). Suppose x /∈ X1. Then {x} is (1, 2)∗-preopen and
thus {x} ∩A 6= φ. This implies x ∈ A. �

Every (1, 2)∗-sg-closed subset of a bitopological space (X, τ1, τ2) is (1, 2)∗-gs-
closed. The converse is not true in general.

Definition 3.2. A bitopological space (X, τ1, τ2) is said to be a (1, 2)∗-Tgs-space
if every (1, 2)∗-gs-closed subset of X is (1, 2)∗-sg-closed.

The following result characterizes the class of (1, 2)∗-Tgs-spaces.

Theorem 3.3. The following are equivalent for a bitopological space (X, τ1, τ2).

(i) (X, τ1, τ2) is a (1, 2)∗-Tgs-space.
(ii) Every singleton {x} of X is either τ1,2-closed or (1, 2)∗-preopen.

Proof. (i)⇒ (ii) Let x ∈ X1 and suppose that {x} is not τ1,2-closed. Then X−{x}
is (1, 2)∗-gs-closed, (1, 2)∗-dense and (1, 2)∗-semi-open. Since (X, τ1, τ2) is a (1, 2)∗-
Tgs-space, X−{x} is (1, 2)∗-sg-closed. Hence X−{x} ⊇ X1∩ (1, 2)∗-scl(X−{x})
= X1 ∩X = X1 or x /∈ X1, a contradiction.
(ii) ⇒ (i): Let A be (1, 2)∗-gs-closed and let x ∈ X1 ∩ (1, 2)∗-scl(A). Then {x} is
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τ1,2-closed. If x /∈ A, then A ⊆ X−{x}, a τ1,2-open set. Since A is (1, 2)∗-gs-closed,
(1, 2)∗-scl(A) ⊆ X − {x}, a contradiction. �

Now let us define (1, 2)∗-extremally disconnected bitopological spaces.

Definition 3.3. A bitopological space (X, τ1, τ2) is said to be (1, 2)∗-extremally
disconnected if the τ1,2-closure of every τ1,2-open subset of X is τ1,2-open.

Remark 3.1. If a bitopological space (X, τ1, τ2) is (1, 2)∗-extremally disconnected,
then (1, 2)∗-αO(X, τ1, τ2) = (1, 2)∗-SO(X, τ1, τ2) since τ1,2-int(τ1,2-cl(τ1,2-int(A)))
= τ1,2-cl(τ1,2-int(A)).

Theorem 3.4. If (1, 2)∗-SO(X, τ1, τ2) of a bitopological space (X, τ1, τ2) forms a
topology then (X, τ1, τ2) is (1, 2)∗-extremally disconnected.

Proof. Suppose (X, τ1, τ2) is not (1, 2)∗-extremally disconnected, then there ex-
ists a τ1,2-open set A such that τ1,2-int(τ1,2-cl(A)) 6= τ1,2-cl(A). Let x ∈ τ1,2-
cl(A)−τ1,2-int(τ1,2-cl(A)). Let B = {x}∪τ1,2-int(τ1,2-cl(A)) and C = (τ1,2-int(τ1,2-
cl(A)))c = τ1,2-cl(τ1,2-int(Ac)). Now τ1,2-cl(τ1,2-int(B)) ⊇ τ1,2-cl(τ1,2-int(τ1,2-
cl(A))) = τ1,2-cl(A) ⊇ {x}. Also τ1,2-cl(τ1,2-int(C)) = τ1,2-cl(τ1,2-int(τ1,2-cl(τ1,2-
int(Ac)))) = τ1,2-cl(τ1,2-int(Ac)) = C ⊇ {x}. Thus B and C are (1, 2)∗-semi-open
sets, but B ∩ C = {x} is not (1, 2)∗-semi-open. �

The converse of Theorem 3.4 need not be true as we see in the following example.

Example 3.1. Let X = {a, b, c} ; τ1 = {φ, {a}, {a, b}, X}; τ2 = {φ, {b, c}, X};
τ1,2-open sets = {φ, {a}, {a, b}, {b, c}, X} = (1, 2)∗-SO(X, τ1, τ2);
(X, τ1, τ2) is (1, 2)∗-extremally disconnected but (1, 2)∗-SO(X, τ1, τ2) does not form
a topology.

Theorem 3.5. If the intersection of any two (1, 2)∗-sg-open sets of a bitopologi-
cal space (X, τ1, τ2) is (1, 2)∗-sg-open then (X, τ1, τ2) is (1, 2)∗-extremally discon-
nected.

Proof. Suppose (X, τ1, τ2) is not (1, 2)∗-extremally disconnected. Then there is a
τ1,2-open set A such that τ1,2-int(τ1,2-cl(A)) 6= τ1,2-cl(A). Let x ∈ τ1,2-cl(A)−τ1,2-
int(τ1,2-cl(A)). If B = A∪ {x} and C = (X − τ1,2-cl(A))∪ {x}, then B and C are
(1, 2)∗-semi-open and hence (1, 2)∗-sg-open. By assumption B∩C = {x} is (1, 2)∗-
sg-open. Then D = X −{x} is (1, 2)∗-sg-closed. Now τ1,2-int(τ1,2-cl({x})) ⊆ τ1,2-
cl(A). Also x ∈ (τ1,2-int(τ1,2-cl(A)))c = τ1,2-cl(τ1,2-int(Ac)) ⊆ Ac implies τ1,2-
int(τ1,2-cl({x})) ⊆ τ1,2-int(Ac) = (τ1,2-cl(A))c. Hence τ1,2-int(τ1,2-cl({x})) = φ
and x ∈ X1. Also τ1,2-int(τ1,2-cl((D)) = τ1,2-int(τ1,2-cl({x})c) = (τ1,2-cl(τ1,2-
int({x})))c = (φ)c = X. Therefore (1, 2)∗-scl(D) = D ∪ τ1,2-int(τ1,2-cl(D)) =
X. Since D is (1, 2)∗-sg-closed, X1 ∩ (1, 2)∗-scl(D) = X1 ⊆ D = X − {x}, a
contradiction. �

Definition 3.4. A bitopological space (X, τ1, τ2) is said to be a DRT - space if
intτ1F = intτ2F for every τ1,2-closed subset F of X.

Remark 3.2. If (X, τ1, τ2) is a DRT bitopological space, then
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(i) (1, 2)∗-pcl (A) = A ∪ τ1,2-cl (τ1,2-int(A)) and
(1, 2)∗-pint(A) = A ∩ τ1,2-int (τ1,2-cl (A)).

(ii) (1, 2)∗-spcl (A) = A ∪ τ1,2-int (τ1,2-cl(τ1,2-int(A))) and
(1, 2)∗-spint (A) = A ∩ τ1,2-cl(τ1,2-int(τ1,2-cl (A))).

(iii) If G is τ1,2-open, then τ1,2-cl(G ∩D) ⊇ G ∩ τ1,2-cl(D).

Theorem 3.6. The following are equivalent in a DRT bitopological space (X, τ1, τ2).

(i) (X, τ1, τ2) is (1, 2)∗-extremally disconnected.
(ii) Every (1, 2)∗-semi-preclosed subset of X is (1, 2)∗-preclosed.

(iii) Every (1, 2)∗-sg-closed subset of X is (1, 2)∗-preclosed.
(iv) Every (1, 2)∗-semi-closed subset of X is (1, 2)∗-preclosed.
(v) Every (1, 2)∗-semi-closed subset of X is (1, 2)∗-α-closed.

(vi) Every (1, 2)∗-semi-closed subset of X is (1, 2)∗-gα-closed.

Proof. (i)⇒(ii) If A is (1, 2)∗-semi-preclosed, then A = (1, 2)∗-spcl(A) = A ∪
τ1,2-int(τ1,2-cl(τ1,2-int(A))) = A ∪ τ1,2-cl(τ1,2-int(A)) since X is (1, 2)∗-extremally
disconnected. Hence A = (1, 2)∗-pcl(A) or A is (1, 2)∗-preclosed.
(ii)⇒(iii) Let A be (1, 2)∗-sg-closed. It is enough to prove that A is (1, 2)∗-semi-
preclosed. Let x ∈ (1, 2)∗-spcl(A). Case(i): {x} is (1, 2)∗-preopen. Then {x} is
(1, 2)∗-semi-preopen and since x ∈ (1, 2)∗-spcl(A), {x} ∩ A 6= φ. Hence x ∈ A.
Case(ii): {x} is nowhere dense. Then {x} is (1, 2)∗-semi-closed which implies
X − {x} is (1, 2)∗-semi-open. Assume that x /∈ A. Then A ⊆ X − {x} and
A is (1, 2)∗-sg-closed imply (1, 2)∗-spcl(A) ⊆ (1, 2)∗-scl(A) ⊆ X − {x}. Hence
x /∈ (1, 2)∗-spcl(A), a contradiction. Therefore x ∈ A. Thus in both the cases , A
= (1, 2)∗-spcl(A) or A is (1, 2)∗-semi-preclosed.
(iii)⇒(iv), (iv)→(v), (v)→(vi) are obvious.
(iv)⇒(i): Let A be τ1,2-open. Consider B = τ1,2-int(τ1,2-cl(τ1,2-int(A))). B is
(1, 2)∗-regular open and therefore (1, 2)∗-semi-closed and (1, 2)∗-α-open. By (vi) B
is (1, 2)∗-gα-closed which implies B = (1, 2)∗-αcl(B) = τ1,2-cl(τ1,2-int(τ1,2-cl(B))).
Hence τ1,2-int(τ1,2-cl(τ1,2-int(A))) = τ1,2-cl(τ1,2-int(A)) or τ1,2-int(τ1,2-cl(A)) =
τ1,2-cl(A). Hence (X, τ1, τ2) is (1, 2)∗-extremally disconnected. �

4. (1, 2)∗-Submaximality

Now let us define (1, 2)∗-submaximal bitopological spaces.

Definition 4.1. A bitopological space (X, τ1, τ2) is said to be (1, 2)∗-submaximal
(resp. (1, 2)∗-g-submaximal ) if every (1, 2)∗-dense subset of X is τ1,2-open
(resp. (1, 2)∗-g-open).

Remark 4.1. Every (1, 2)∗-submaximal space is (1, 2)∗-g-submaximal but not con-
versely.

Example 4.1. Let X = {a, b, c} ; τ1 = {φ, {a}, X};
τ2 = {φ, {b, c}, X}; τ1,2-open sets = {φ, {a}, {b, c}, X};
(X, τ1, τ2) is (1, 2)∗-g-submaximal but not (1, 2)∗-submaximal.

Definition 4.2. A bitopological space (X, τ1, τ2) is said to be (1, 2)∗-sg-submaximal
(resp. (1, 2)∗-α-submaximal) if every (1, 2)∗-dense subset of X is (1, 2)∗-sg-open
(resp. (1, 2)∗-α-open).
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5. Applications

Now let us see some applications of (1, 2)∗-extremally disconnectedness and
(1, 2)∗-submaximality in bitopological spaces.

Theorem 5.1. Let (X, τ1, τ2) be a DRT bitopological space in which every (1, 2)∗-
semi-preclosed set is (1, 2)∗-gα-closed. Then (X, τα1 , τ

α
2 ) is (1, 2)∗-extremally dis-

connected and (1, 2)∗-g-submaximal.

Proof. If every (1, 2)∗-semi-preclosed subset of X is (1, 2)∗-gα-closed, then every
(1, 2)∗-semi-closed subset of X is (1, 2)∗-gα-closed and hence by Theorem 3.6,
(X, τ1, τ2) is (1, 2)∗-extremally disconnected. Now (1, 2)∗-αcl((1, 2)∗-αint(A)) =
τ1,2-cl((1, 2)∗-αint(A)) = τ1,2-cl(τ1,2-int((1, 2)∗-αint(A))). Also (1, 2)∗-αint((1, 2)∗-
αcl(A)) = τ1,2-int((1, 2)∗-αcl(A)) = τ1,2-int(τ1,2-cl((1, 2)∗-αcl(A))). Hence
(1, 2)∗-αint((1, 2)∗-αcl((1, 2)∗-αint(A))) = τ1,2-int((1, 2)∗-αcl((1, 2)∗-αint(A))) =
τ1,2-int(τ1,2-cl((1, 2)∗-αint(A))) = τ1,2-int(τ1,2-cl(τ1,2-int((1, 2)∗-αint(A)))) = τ1,2-
cl(τ1,2-int((1, 2)∗-αint(A))) = (1, 2)∗-αcl((1, 2)∗-αintA)) for every subset A of X.
Therefore (X, τα1 , τ

α
2 ) is (1, 2)∗-extremally disconnected. Let A ⊆ X be a dense

subset in (X, τα1 , τ
α
2 ). Then (1, 2)∗-αcl(A) = X. Since τ1,2-cl(A ⊇ (1, 2)∗-αcl(A),

τ1,2-cl(A) = X. This implies τ1,2-cl(τ1,2-int(τ1,2-cl(A))) = X and therefore A is
(1, 2)∗-semi-preopen or X −A is (1, 2)∗-semi-preclosed. So Ac is (1, 2)∗-gα-closed
and A is (1, 2)∗-g-open in (X, τα1 , τ

α
2 ). �

Lemma 5.1. (X, τ1, τ2) and (X, τα1 , τ
α
2 ) share the classes of dense subsets.

Proof. It has been proved in Theorem 5.1 that, if A is dense in (X, τα1 , τ
α
2 ) then

A is dense in (X, τ1, τ2). Conversely let A be dense in (X, τ1, τ2). Then τ1,2-cl(A)
= X which implies τ1,2-cl(τ1,2-int(τ1,2-cl(A))) = X. Therefore (1, 2)∗-αcl(A) =
A ∪ τ1,2-cl(τ1,2-int(τ1,2-cl(A))) = X or A is dense in (X, τα1 , τ

α
2 ). �

Remark 5.1. Since (X, τ1, τ2) and (X, τα1 , τ
α
2 ) share the classes of dense subsets

(X, τ1, τ2) is (1, 2)∗-α-submaximal if and only if (X, τα1 , τ
α
2 ) is (1, 2)∗-submaximal.

Lemma 5.2. (X, τ1, τ2) and (X, τα1 , τ
α
2 ) share the classes of (1, 2)∗-sg-open sub-

sets.

Proof. Let A be any (1, 2)∗-sg-closed set in (X, τ1, τ2) and U be any (1, 2)∗-semi-
open set in (X, τα1 , τ

α
2 ) containing A. Then U ⊆ (1, 2)∗-αcl((1, 2)∗-αint(U)) =

τ1,2-cl(τ1,2-int((1, 2)∗-αint(U))) ⊆ τ1,2-cl(τ1,2-int(U)), which implies U is (1, 2)∗-
semi-open in (X, τ1, τ2). Since A is (1, 2)∗-sg-closed set in (X, τ1, τ2), (1, 2)∗-
scl(A) ⊆ U . Now (1, 2)∗-αint((1, 2)∗-αcl(A)) = τ1,2-int(τ1,2-cl((1, 2)∗-αcl(A)))
= τ1,2-int(τ1,2-cl(A ∪ τ1,2-cl(τ1,2-int(τ1,2-cl(A))))) ⊆ τ1,2-int(τ1,2-cl(A)) ⊆ (1, 2)∗-
scl(A) ⊆ U . Hence A is (1, 2)∗-sg-closed in (X, τα1 , τ

α
2 ). Conversely let A be

(1, 2)∗-sg-closed in (X, τα1 , τ
α
2 ) and U be any (1, 2)∗-semi-open set in (X, τ1, τ2) con-

taining A. Then (1, 2)∗-αcl((1, 2)∗-αint(U)) = τ1,2-cl(τ1,2-int((1, 2)∗-αint(U))) =
τ1,2-cl(τ1,2-int(U ∩ τ1,2-int(τ1,2-cl(τ1,2-int(U))))) ⊇ τ1,2-cl(τ1,2-int(U)) ⊇ U . Hence
U is (1, 2)∗-semi-open set in (X, τα1 , τ

α
2 ). Since A is (1, 2)∗-sg-closed in (X, τα1 , τ

α
2 ),

(1, 2)∗-scl(A) in (X, τα1 , τ
α
2 ) is contained in U . That is A ∪ (1, 2)∗-αint((1, 2)∗-

αcl(A)) ⊆ U . Therefore τ1,2-int(τ1,2-cl(A)) ⊆ τ1,2-int(τ1,2-cl((1, 2)∗-αcl(A)) =
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(1, 2)∗-αint((1, 2)∗-αcl(A)) ⊆ U . This implies (1, 2)∗-scl(A) = A ∪ τ1,2-int(τ1,2-
cl(A)) ⊆ U . Hence A is (1, 2)∗-sg-closed in (X, τ1, τ2). �

Theorem 5.2. A bitopological space (X, τ1, τ2) is (1, 2)∗-sg-submaximal if and
only if the bitopological space (X, τα1 , τ

α
2 ) is (1, 2)∗-sg-submaximal.

Proof follows from Lemmas 5.1 and 5.2.

Now let us see some properties of the (1, 2)∗-preopen sets in a (1, 2)∗-submaximal
space. We first prove some simple characterisation of (1, 2)∗-preopen sets in a
DRT bitopological space.

Theorem 5.3. For any subset S of a DRT bitopological space (X, τ1, τ2) the fol-
lowing are equivalent

(i) S ∈ (1, 2)∗-PO(X).
(ii) There is a (1, 2)∗-regular open set G ⊆ X such that S ⊆ G and τ1,2-cl(S) =

τ1,2-cl(G).
(iii) S is the intersection of a (1, 2)∗-regular open set and a (1, 2)∗-dense set.
(iv) S is the intersection of a τ1,2- open set and a (1, 2)∗-dense set.

Proof. (i) ⇒(ii) Let S ∈ (1, 2)∗-PO(X) and G = τ1,2-int(τ1,2-cl(S)). Then G is
(1, 2)∗-regular open with S ⊆ G. Now τ1,2-cl(G) = τ1,2-cl(τ1,2-int(τ1,2-cl(S))) ⊆
τ1,2-cl(S) ⊆ τ1,2-cl(G). Hence τ1,2-cl(G) = τ1,2-cl(S).
(ii) ⇒(iii) Let D = S ∪ (X −G). Then τ1,2-cl(D) ⊇ τ1,2-cl(S)∪ τ1,2-cl(Gc) ⊇ τ1,2-
cl(S) ∪Gc = τ1,2-cl(G) ∪Gc ⊇ X. Therefore τ1,2-cl(D) = X or D is (1, 2)∗-dense
in X. Also G ∩D = S.
(iii) ⇒(iv): It follows since every (1, 2)∗-regular open set is τ1,2-open. (iv) ⇒(i):
Suppose S = G ∩ D with G, τ1,2-open and D, (1, 2)∗-dense. Then τ1,2-cl(S) =
τ1,2-cl(G∩D) ⊇ G∩τ1,2-cl(D) ⊇ G∩X = G. Hence τ1,2-cl(S) ⊇ τ1,2-cl(G) ⊇ τ1,2-
cl(S) or τ1,2-cl(S) = τ1,2-cl(G). Hence S ⊆ G ⊆ τ1,2-cl(G) ⊆ τ1,2-cl(S) which
imply S ⊆ G = τ1,2-int(G) ⊆ τ1,2-int(τ1,2-cl(S)). Hence S is (1, 2)∗-preopen. �

Theorem 5.4. Let (X, τ1, τ2) be a bitopological space. Then

(i) (1, 2)∗-SO(X, τ1, τ2) = (1, 2)∗-SO(X, τα1 , τ
α
2 ).

(ii) (1, 2)∗-PO(X, τ1, τ2) = (1, 2)∗-PO(X, τα1 , τ
α
2 ).

(iii) (1, 2)∗-αO(X, τ1, τ2) = (1, 2)∗-αO(X, τα1 , τ
α
2 ).

Proof. (i) is proved in Lemma 5.2.
(ii) Let A ∈ (1, 2)∗-PO(X, τ1, τ2). Now (1, 2)∗-αint((1, 2)∗-αcl(A)) = τ1,2-int(τ1,2-
cl((1, 2)∗-αcl(A))) ⊇ τ1,2-int(τ1,2-cl(A)) ⊇ A. ThereforeA ∈ (1, 2)∗-PO(X, τα1 , τ

α
2 ).

Let A ∈ (1, 2)∗-PO(X, τα1 , τ
α
2 ). Then A ⊆ (1, 2)∗-αint((1, 2)∗-αcl(A)) ⊆ (1, 2)∗-

αint(τ1,2-cl(A)) = τ1,2-cl(A) ∩ τ1,2-int(τ1,2-cl(τ1,2-int(τ1,2-cl(A)))) = τ1,2-cl(A) ∩
τ1,2-int(τ1,2-cl(A)) = τ1,2-int(τ1,2-cl(A)). ThereforeA ∈ (1, 2)∗-PO(X, τ1, τ2). Hence
(1, 2)∗-PO(X, τ1, τ2) = (1, 2)∗-PO(X, τα1 , τ

α
2 ).

(iii) (1, 2)∗-αO(X, τ1, τ2) = (1, 2)∗-SO(X, τ1, τ2) ∩ (1, 2)∗-PO(X, τ1, τ2) = (1, 2)∗-
SO(X, τα1 , τ

α
2 ) ∩ (1, 2)∗-PO(X, τα1 , τ

α
2 ) = (1, 2)∗-αO(X, τα1 , τ

α
2 ). �

Theorem 5.5. Let (X, τ1, τ2) be a bitopological space, S ∈ (1, 2)∗-PO(X, τ1, τ2)
and x ∈ τ1,2-cl(S)− τ1,2-int(τ1,2-cl(S)). Then S ∪ {x} /∈ (1, 2)∗-PO(X, τ1, τ2). In
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particular if G is (1, 2)∗-regular open in (X, τ1, τ2) and x ∈ τ1,2-cl(G) − G, then
G ∪ {x} /∈ (1, 2)∗-PO(X, τ1, τ2).

Proof. Since x ∈ τ1,2-cl(S), τ1,2-cl(S) ⊇ τ1,2-cl(S ∪ {x}) ⊇ τ1,2-cl(S). Therefore
τ1,2-cl(S) = τ1,2-cl(S ∪{x}) which implies τ1,2-int(τ1,2-cl(S ∪{x})) = τ1,2-int(τ1,2-
cl(S)). Since x /∈ τ1,2-cl(S), S ∪ {x}) * τ1,2-int(τ1,2-cl(S ∪ {x})) and S ∪ {x} /∈
(1, 2)∗-PO(X, τ1, τ2). �

Theorem 5.6. If (X, τ1, τ2) is a (1, 2)∗-submaximal DRT bitopological space, then
any (1, 2)∗-preopen set is the intersection of two τ1,2-open sets.

Proof. By Theorem 5.3, if A is (1, 2)∗-preopen then A = G ∩D where G is τ1,2-
open and D is (1, 2)∗-dense in (X, τ1, τ2). Since (X, τ1, τ2) is (1, 2)∗-submaximal,
D is τ1,2-open. Hence A is the intersection of two τ1,2-open sets. �

Theorem 5.7. If in a bitopological space (X, τ1, τ2), (1, 2)∗-PO(X, τ1, τ2) = τ1,2-
open sets, then (X, τ1, τ2) is (1, 2)∗-submaximal.

Proof. Let (1, 2)∗-PO(X, τ1, τ2) = τ1,2-open sets. LetD be (1, 2)∗-dense in (X, τ1, τ2).
Then τ1,2-cl(D) = X. This implies τ1,2-int(τ1,2-cl(D)) = X ⊇ D. Therefore
D is (1, 2)∗-preopen which implies D is τ1,2-open. Hence (X, τ1, τ2) is (1, 2)∗-
submaximal.
Converse of Theorem 5.7 is not true in general. �

Example 5.1. Let X = {a, b, c, d} ; τ1 = {φ, {d}, {a, b, d}, X}
τ2 = {φ, {c}, {c, d}, {b, c, d}, {a, c, d}, X};
τ1,2-open sets = {φ, {d}, {a, b, d}, {c}, {c, d}, {b, c, d}, {a, c, d}, X}.
τ1,2-closed sets = {φ, {a, b, c}, {c}, {a, b, d}, {a, b}, {a}, {b}, X}.
(X, τ1, τ2) is (1, 2)∗-submaximal but (1, 2)∗-PO(X, τ1, τ2) 6= τ1,2-open sets since
{b, d} is (1, 2)∗-preopen but not τ1,2-open.
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