Математички Билтен 18 (XLIV) 1994 (49-56) Скопје, Македонија ISSN 0351-336X

ON OPERATOR VALUED WEIGHTED SHIFTS COMMUTING WITH U

Marija Orovčanec

Abstract. In this paper we consider some properties of the operators K_{n+} and of the operators on K_{A} where $A \in K_{n+}$. Also we shall give some information about the operators that commutes with U_{+} . The computations show that operator $X \in B(t^{2}(H))$ which commutes with U_{+} is the formal power series $U_{+}^{*}\overline{A_{0}} \,+\, \sum_{i=0}^{\infty}U_{+}^{i}\overline{A_{i+1}}, \ \overline{A_{i}} \ K_{U_{+}}.$

$$U_{+}^{*}\overline{A_{0}} + \underbrace{1=0}_{i=0}U_{+}^{i}\overline{A_{i+1}}, \overline{A_{i}} K_{U_{+}}.$$

At the end we shall prove that if $(||A_i||)_{i=0}^{\infty} \in t^+$ then the formal power series is a bounded operator and is the limit in uniform operator topology of a sequence of polinomials in U.

Let H be a complex Hilbert space and $t^2(H) = \Sigma \oplus H_n$, $H_n = H$ for all n is the Hilbert space with scalar product defined by $(x,y) = E(x_n,y_n)$. Let B(H) be the algebra of all (bound linear) operators from H to H, and let with B_{inv} we denote the set of all invertible operators on H.

One of the most interesting continous linear operators is the unilateral shift, the operator S defined on £2 by

$$S(x_0, x_1,...) = (0, x_0, x_1,...)$$

Coresponding to each sequence $\{w_n^{}\}_{n=0}^{\infty}$ in t^{∞} there is the weighted unilateral shift W, defined on &2 by

$$W(x_0, x_1, ...) = (0, w_0 x_0, w_1 x_1, ...)$$

Coresponding to each uniformly bounded sequence $(A_n)_{n=0}^{\infty}$ of bounded and linear operators on H, there is the unilateral operator valued weighted shift A defined on £2(H) by $A(x_0, x_1, ...) = (0, A_0x_0, A_1x_1, ...)$ and we shall denote it by $A \sim (A_i)_{i=0}.$

If $A_n=1$ for all n, then with U_{\perp} we shall denote the operator valued weighted shift (OVWS) U_{\perp} ~ (1). With S we shall denote the

set of all unilateral operator valued weighted shifts with invertible weights and $K_A = \{B \in S, AB = BA\}$, $A \in S$.

Throught this paper we consider some properties of the operators on ${\rm K_{u+}}$ and of the operators on ${\rm K_A}$ when ${\rm A^{\xi K}_{u+}}.$

<u>Proposition 1</u>. If B ~ $(B_i) \in K_A$ where A ~ (A_i) , then $A_i \neq B_i$ for all i.

<u>Proof.</u> Suppose that there exists an $i_o > 0$ such that $A_{io} = B_{io}$ and $A_k \neq B_k$ for all $k < i_o$. Since $(A_{io-1} - B_{io-1}) \# \subset Ker A_{io} = \{0\}$, this implies $A_{io-1} = B_{io-1}$. So $A_i = B_i$ for all $i \leq i_o$.

On the other hand $A_{io+1}B_{io} = B_{io+1}A_{io} = B_{io+1}B_{io}$, we have that $(A_{io+1}-B_{io+1})B_{io}H = \{0\}$ and so $A_{io+1} = B_{io+1}$ because $B_{io}H = H$. We get that $A_i = B_i$ for all $i \in \mathbb{N}$, i.e. A = B. \diamondsuit

Note that $A \in K_{i,i+1}$ and $A \neq U_{i+1}$ then $A_{i+1} \neq 1$ for all i.

Proposition 2. $A \in K_{u+}$ iff $A_i = A_{i-1}$ for all i.

<u>Proof.</u> Let $A \in K_{u+}$, than $A_i = 1A_{i-1}$ for all i. Suppose now that $A_i = A$ for all i and $\overline{A} \sim (A)$. Then $\overline{A}U_+ = U_+\overline{A}$ i.e. $\overline{A} \in K_{u+}$.

Throught this paper \overline{A} ~ (A) will be used to denote the operators on K_{n+} .

The question that arises is the connection between K_{u+} and B_{inv} . We shall prove that there exists an isometric isomorphism of K_{u+} onto B_{inv} . We shall need the following result:

Lemma 3. Let A ~ (A_1) is the unilateral operator valued weighted shift. Then A is bounded iff $\sup ||A_1|| < \infty$ and then we have $||A|| = \sup ||A_1||$.

Proof. Let $f = (f_0, f_1, ...) \in \ell^2(H)$ and $M = \sup_i ||A_i|| < \infty$.

Af = $(0, A_0 f_0, A_1 f_1, ...)$ and so $||Af||^2 = \sum_{i=0}^{\infty} ||A_i f_i||^2 \le \sum_{i=0}^{\infty} ||A_i||^2 ||f_i||^2 \le M^2 ||f||^2.$

It is then obvious that

$$|A| = \sup_{f \neq 0} \frac{|Af|}{|f|} \leq M.$$

Suppose now that $f_k^i \in H$ is such that $||f_k^i|| = 1$. Let $\tilde{f}_k = (0,0,\ldots,f_k^i,0,0,\ldots)$ where f_k^i is a vector on i position. Then

we have
$$||\tilde{f}_k|| = 1$$
, $Af_k = (0,0,\dots,A_if_k^i,0,\dots)$ and
$$||A|| \ge ||Af_k|| = ||A_if_k^i||.$$
 So $||A_i|| = \sup_{i} ||A_if_k^i|| \le ||A||$ for all i and then $||f_k^i|| = 1$
$$M = \sup_{i} ||A_i|| \le ||A||. \diamond$$

Proposition 4. K_{u+} is isometrically isomorphic to B_{inv} .

<u>Proof.</u> Let A e B_{inv} . We shall define the operator valued weighted shift \overline{A} ~ (A), then $\overline{A} \in K_{u+}$. Let i: $B_{inv} \to K_{u+}$ be defined by $i(A) = \overline{A}$. It is easy to verify that i is linear; by Proposition 2 i is surjective.

Also i is an isometry: $||i(A)||=||\overline{A}||=\sup ||A_i||=||A||$.

<u>Proposition 5</u>. Let $\overline{A} \in K_{u+}$, then $B - (B_1) \in K_{\overline{A}}$ if and only if there exists $B_0 \in B_{\underline{inv}}$ such that the sequence $(A^{\overline{n}}B_0A^{-n})_n$ is uniformly bounded and $B_n = A^{\overline{n}}B_0A^{-n}$.

<u>Proof.</u> Let $\overline{A} \in K_{u+}$; by Proposition 2 \overline{A} ~ (A) if B ~ (B_i) $\in K_{\overline{A}}$, then $B_i A = AB_{i-1}$ for all i, i.e. $B_i = AB_{i-1}A^{-1} = A^iB_0A^{-i}$ and the sequence $(A^iB_0A^{-i})$ is uniformly bounded.

Conversly, let $B_o \in B_{\underline{i} \, \underline{n} \, V}$ be such that the sequence $(A^n B_o A^{-n})_n$ is uniformly bounded, and let $B_n = A^n B_o A^{-n}$. Then for the OVWS $B \sim (B_n)$ we have $B\overline{A} = \overline{A}B$ i.e. $B \in K_{\overline{A}}$. \diamondsuit

Examples:

- $\underline{1}$. If $B_0 = 1$, then $B = U_+$.
- $\underline{2}$. If $B_0 = A$, then $B = \overline{A}$.
- $\underline{3}$. Let A be quasinormal (A commutates with A*A) and A = UP be the polar decomposition of A, then for $B_0=P$, $B=\overline{P}\in K_{U+}\cap K_{\overline{A}}$; and for $B_0=U$, $B=\overline{U}\in K_{U+}\cap K_{\overline{A}}$.
 - 4. If B_o commutes with A then B = $\overline{B}_0 \in K_{n+1} \cap K_{\overline{R}}$.

<u>Proposition 6.</u> Let $\overline{A} \in K_{U+}$ and A = UP be the polar decomposition of A, then \overline{A} is unitarily equivalent to an unilateral operator valued weighted shift with positive weights $Q \in K_{\overline{11}}$.

<u>Proof.</u> Let $\overline{A} \in K_{U+}$ and A=UP be the polar decomposition of A. Then U is unitary operator and P is positive. Let W = $\operatorname{diag}(U^{n})_{n=0}^{\infty}$ be the diagonal operator with the diagonal elements $(U^{n})_{n=0}^{\infty}$, then WU₊W* = \overline{U} , i.e. the operator valued weighted shift \overline{U} ~ (U) is unitarily equivalent to U₊. Also $\overline{A} = \overline{U} \operatorname{diag}(P)$ is the polar decomposition of \overline{A} .

Then $\overline{A} = WU_+W*diag(P) = WU_+W*diag(P)WW* = WQW*. Q is the operator valued weighted shift <math>U_+W*diag(P)W \sim (U^nPU^{-n})_{n=0}^{\infty}$ with positive weights. By Proposition 5, $Q \in K_{\overline{n}}$. \diamondsuit

Corollary 7. If A is quasinormal, then \overline{A} is quasinormal and unitarily equivalent to \overline{P} .

<u>Proof.</u> A is quasinormal iff PU = UP. Then Q = \overline{P} . \diamond

We can see now that if A and B are unitary operators on H, then $K_{\overline{A}}$ is isometrically isomorphic to $K_{\overline{B}}$.

<u>Proposition 8.</u> Let A be an unitary operator then $K_{\overline{A}}$ is isometrically isomorphic to B_{inv} .

<u>Proof.</u> Let $B_0 \in B_{inv}$. We shall define the operator $B_1 = \operatorname{diag}(A^n B_0 A^{-n})_{n=0}^{\infty}$ and $B = U_+ B_1$.

B is bounded: $||B|| = \sup ||A^nB_oA^{-n}|| \le ||B_o|| < \infty$. So B is an operator valued weighted shift and BCK_{\overline{A}}.

Let i: $B_{inv} \to K_{\overline{A}}$ be defined by $i(B_o) = B \sim (A^n B_o A^{-n}) \in K_{\overline{A}}$. It is easy to verify that i is linear.

Let $C \in K_{\overline{A}}$. By Proposition 5, there exists $C_0 \in B_{\underline{inv}}$ such that $C - (A^n C_0 A^{-n})_{n=0}^{\infty}$ i.e. $i(C_0) = C$. So, i is surjective. It remains to show that i is an isometry.

$$||i(B_0)|| = ||B|| = \sup_{n} ||A^nB_0A^{-n}|| = ||B_0||$$
 (for n=0). \diamond

Corollary 9. If A is an unitary operator, then there exists a map which is isometric isomorfism of $K_{\overline{A}}$.

Corollary 10. If A and B are unitary operators then $K_{\overline{A}}$ and $K_{\overline{B}}$ are isometrically isomorphic.

 $\frac{\text{Proof. Let i: } K_{\overline{A}} \rightarrow K_{\overline{B}} \text{ be defined by i: } C \rightarrow C_1 \text{ where } C \sim (A^n C_0 A^{-n})_n \text{ and } C_1 \sim (B^n C_0 B^{-n})_n. \text{ Of course, i is isomorfism.}$

 $||i(C)|| = ||C_1|| = ||C_0|| = ||C||$, so i is an isometry.

<u>Proposition 11.</u> The operators A and BeB(H) are commuting iff $\overline{A} \in K_{\overline{B}}$.

<u>Proof.</u> Let AB = BA and $\overline{A} \sim (A)$. Then $A = A \cdot 1 = AB^nB^{-n}$ and so $\overline{A} \in K_{\overline{B}}$. Suppose now that $\overline{A} \in K_{\overline{B}}$. Then for some $A_o \in B_{\underline{inv}} \overline{A} \sim (B^nA_oB^{-n})_n$, i.e. $A = B^nA_oB^{-n}$ for all n. For n=0 we get that $A_o = A$ and for n = 1, $A = BAB^{-1}$ i.e. AB = BA. \Diamond

Next we should like to give some information about the operators that commutates with \mathbf{U}_{\perp} .

Let $(A_i)_{i=0}^{\infty}$ be a sequence of bounded linear invertible operators on H and \overline{A}_i - $(A_i) \in K_{n+}$.

A polynomial in U,,

$$P_{n}(U_{+}) = U_{+}^{*}\overline{A} + \sum_{i=0}^{n-1} U_{+}^{i}\overline{A_{i+1}}, \quad \overline{A}_{i} \in K_{U_{+}}$$
 (*)

has the following matrix representation:

Note that the matrix is lower triangular and the non-zero en entries lie in a diagonal strip of width n+1. From (*) it is obvious that $||P_n(U_+)|| \le \frac{r}{r} ||A_i||$. So every polinomial of type i=0 (*) is bounded and commutes with U_+ .

Now, let $X \in B(\ell^2(H))$ commutes with U_+ . The computations show X is the formal power series

$$U_{+}^{*}\overline{A}_{0} + \sum_{i=0}^{\infty} U_{+}^{i}\overline{A}_{i+1}, \quad \overline{A}_{i} \in K_{u+}$$
 (**)

X has the following matrix:

$$\begin{bmatrix} A_{0} & 0 & 0 & . \\ A_{1} & A_{0} & 0 & . \\ . & . & . & . \\ A_{n} & A_{n-1} & A_{n-2} & . \\ A_{n+1} & A_{n} & A_{n-1} & . \\ A_{n+2} & A_{n+1} & A_{n} & . \\ . & . & . & . \end{bmatrix}$$

Note that if X is bounded, then (A_i) is uniformly bounded sequence of operators. Let $f_0 \in H$, $||f_0|| = 1$ and $f = (f_0, 0, 0, ...)$.

Then ||f||=1 and $\infty > ||X||^2 \ge ||Xf||^2 = \sum_{i=0}^{\infty} ||A_i f_0|| \ge ||A_i f_0||^2$ for all i, and for all $f_0 \in H$, $||f_0|| = 1$.

Then $||A_i|| = \sup_{||f_0|| = 1} ||A_i f_0|| \le ||X|| < \infty$, for all $i \Rightarrow \sup_{i} ||A_i|| \le ||X|| < \infty$.

Note also that if the sequence (A_i) is uniformly bounded, then X is not necesserily bounded on $\ell^2(H)$. For example, let A_i be unitary for all i and let $X = U_+^*\overline{A}_0 + U_+^{\dagger}\overline{A}_{1+1}$. Let $f_0 \in H$ be such that $||f_0||=1$ and $f=(f_0,0,0,\ldots)$. Then

$$||X||^{2} \ge ||Xf||^{2} = \sum_{i=0}^{\infty} ||A_{i}f||^{2} = \sum_{i=0}^{\infty} ||f_{0}||^{2} = \infty.$$

The natural question that arises from the above discussion is the following:

When the formal power series (**) defines a bounded operator?
We shall prove the following:

<u>Proposition 12.</u> If $\{||A_i||\}_{i=0}^{\infty} \in \mathbb{L}^1$, then the formal power series (**) is a bounded operator and is the limit, in uniform operator topology of a sequence of polinomials in U_+ .

Proof. Let $\{||A_1||\}_{i=0}^{\infty} \in \ell^1$ and $X=U_+^*\overline{A}_0+\sum\limits_{i=0}^{\infty}U_+^{i}\overline{A}_{i+1}$, $\overline{A}_i \sim (A_i)\in K_{u+}$.

Let $\varepsilon > 0$, then there exists $n_0 \in \mathbb{N}$ such that for $n \geq n_0$, $\sum\limits_{i=n+1}^{\infty}||A_i|| < \sqrt{\varepsilon}$.

Let $f = (f_0, f_1, \ldots) \in \ell^2(H)$ is such that ||f|| = 1.

Then:

$$(X-P_n(U_+))f = (0,0,A_{n+1}f_0,A_{n+2}f_0+A_{n+1}f_1,$$

$$M_{n+3}f_0+A_{n+2}f_1+A_{n+1}f_2,...,\sum_{k=0}^{\infty}A_{n+m-k+1}f_k,...)$$

and so:

$$||(X-P_n(U_+)f||^2 = ||A_{n+1}f_0||^2 + ||A_{n+2}f_0 + A_{n+1}f_1||^2 + ||A_{n+2}f_0 + A_{n+1}f_1||^2 + ||A_{n+2}f_0 + A_{n+2}f_1 + A_{n+2}f_2||^2 + \dots \le$$

$$||\mathbf{A}_{n+1}\mathbf{f}_{o}||^{2}+||\mathbf{A}_{n+2}\mathbf{f}_{o}||^{2}+||\mathbf{A}_{n+1}\mathbf{f}_{1}||^{2}+2||\mathbf{A}_{n+2}\mathbf{f}_{o}|| \ ||\mathbf{A}_{n+1}\mathbf{f}_{1}|| \ +$$

$$|\,|\,A_{n+3}f_{o}\,|\,|^{\,2}+|\,|\,A_{n+2}f_{\,1}\,|\,|^{\,2}+|\,|\,A_{n+1}f_{\,2}\,|\,|^{\,2}+2\,|\,|\,A_{n+3}f_{\,0}\,|\,|\,\,|\,|\,A_{n+2}f_{\,1}\,|\,|\,\,+$$

$$2||A_{n+3}f_0|| ||A_{n+1}f_2||+2||A_{n+2}f_1|| ||A_{n+1}f_2||+... =$$

$$\sum_{i=0}^{\infty} ||A_{n+1}f_{i}||^{2} + \sum_{i=0}^{\infty} ||A_{n+2}f_{i}||^{2} + \ldots + 2\sum_{i=0}^{\infty} ||A_{n+2}f_{i}|| ||A_{n+1}f_{i+1}|| +$$

$$2\sum_{i=0}^{\infty} ||A_{n+3}f_i|| \qquad ||A_{n+1}f_{i+2}||+\dots <||A_{n+1}||^2||f||^2 + ||A_{n+2}||^2||f||^2 + \dots + ||A_{n+3}f_i||^2 + ||A_{n+2}||^2 + ||A_{n+3}f_i||^2 + ||A_{n+$$

$$2(\sum_{i=0}^{\infty}||A_{n+2}f_{i}||^{2})^{1/2}(\sum_{i=0}^{\infty}||A_{n+1}f_{i}||^{2})^{1/2} +$$

$$2\left(\sum_{i=0}^{\infty} ||A_{n+3}f_{i}||^{2}\right)^{1/2}\left(\sum_{i=0}^{\infty} ||A_{n+1}f_{i+2}||^{2}\right)^{1/2} + \dots \leq$$

$$\leq \sum_{i=0}^{\infty} ||A_{n+i}||^{2} + 2||A_{n+2}|| ||A_{n+1}|| + 2||A_{n+3}|| ||A_{n+1}|| + \dots = 1$$

$$\left(\sum_{i=n+1}^{\infty}||A_{i}||\right)^{2}<\varepsilon.$$

$$\Rightarrow ||X-P_{n}(U_{n}(U_{+}))|| = \sup_{||f||=1} ||(X-P_{n}(U_{+})).f|| \le \varepsilon,$$

i.e. X is the limit in uniform operator topology of a sequence of polinomials in $\mathbf{U}_{+}.$

Now from the inequality:

$$||X|| - ||P_n(U_+)|| \le ||X-P_n(U_+)|| < \varepsilon$$

we get that

$$||P_{\mathbf{n}}(\mathbf{U}_{+})||-\epsilon \le ||\mathbf{X}|| \le ||P_{\mathbf{n}}(\mathbf{U}_{+})||+\epsilon \le \sum_{\mathbf{i}=0}^{\infty} ||\mathbf{A}_{\mathbf{i}}|| + \epsilon < \infty$$

i.e. X is a bounded operator. •

REFERENCES

- [1] Shields, Wallen.: The Commutants of Certain Hilbert Space
 Operators, Indiana University Mathematics Journal, Vol 20,
 No 9. (1971)
- [2] Halmos P.R.: A Hilbert Spaces Problem Book, Van Nostrand Princenton, New Yersey, Toronto, 1967

за операторско тежинските шиотови што комутираат со \mathbf{U}_{+} марија Оровчанец

Резиме

Во овој труд разгленуваме некои својства на оператори од K_{u+} и од K_{A} каде што $A \in K_{u+}$. Исто така даваме некои информации за оператори што комутираат со U_{+} . Пресметувањата покажуваат дека операторот $X \in \mathcal{B}(\mathfrak{L}^2(H))$ што комутира со U_{+} е формалниот степенски ред

$$U_{+}^{*}\overline{A}_{o} + \sum_{i=0}^{\infty} U_{+}^{i}\overline{A_{i+1}}, \overline{A}_{i} \in K_{U_{+}}.$$

на крај покажуваме дека ако низата $(||A_{\bf i}||)_{{\bf i}=0}^{\infty} \in \mathbb{R}^1$ тогам формалниот степенски рад е ограничен оператор и е граница, во рамномерна оператор топологија, на низа од полиноми од $U_{\bf i}$.

Prirodno-matematički fakultet Institut za matematika p.f. 162 91000 Skopje Macedonia