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Abstract

In [5] was introduced the concept of an n-normed space. In
this paper are considered n-functionals and it s connection with
bounded linear functionals deﬁned on the factor-space on (n - 1)-

Banach theorem for the bounded linear n-functionals.

1. Introduction

In this work with L we will denote the n-normed space, in which the

n-norm is introduced in [5] as follows:

| E

i)
ii)
iii)

iv)

Let L be a real vector space with dimension greater than n, n > 1 and
,+|| is a real function on L™ with the following properties:

|z1,-..,2a]] > 0, for every z1,...,2, € L and |[z1,...,2,|| =0 if and
only if the set {zy,..., zn} is linearly dependent; _

lz1, ... zn]| = |7 (21),...,7(2,)| for every TiyeesTn € L and every
bejektion 7: {zy,... mn} — {xl,.. sTats v o

lazy, ...,z = |a| - ||z1,. .., &xl, for every zq,...,2, € L and every
a € R;

2y + 2, .. enll < N1, @l + 12, . 2nll, for every z1, ..., 2y,
zy € L, ‘ ’ :
The function ||-,...,|| is called an n-norm on L, and (L™, ||-,...,-}|)is

called n-normed space

Some examples of n-normed spaces are glven in [1], [2], [4] and [5].
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Definition 1. Let X;,¢=1,2,...,n and Y are real vector spaces. An
n-linear operator A: X; X ... X X, — Y is every function A(zy,...,2n),
z; € X;,1=1,2,...,n, which is linear in every it’s argument. If Y is the

set of real numbers, then the n-linear operator is called n-linear functional.
It easy to see that the operator (functional) A is a n-linear if and only

if
1) A(wl+y1am2+y2,°"1xn+yn)= Z A(21,22,...,Zn), and
zi € {xi,vi}
i=1,2,...,n

ii) A(a1z1,0222,...,0n%,) = @109 . .. an A(Z1,22,...,2,),
a; €R,i=12,...,n

Definition 2. Let L be a n-normed space. We say that the
n-functional f with domain D(f) C L™ is bounded if there is a real constant
k > 0 such that
|f(1171,$2, .. '7xn)| < k||$1,$2, e 7x'n.”’ for every (.’171,1:2, . 'azn') € D(f) .
If f is a bounded n-functional, we define a norm of f, denoting by ||fl|,
with
ifli=inf{k| |f(z1,22,...,%a)| < kliz1,22,...,24]|, for every (z1,22,...,2,) € D(f)}.
If f is not bounded n-functional, then by definition we put ||f|| = +oo.

Lemma 1. Let L be a n-normed space and f is a bounded n-functional
with domain D(f) C L™. K.

zi=Az;, for some i,5€{1,2,...,n}, i#j, over (z1,2s,...,2,) € D(f),

than
f(xlax%" s ZTi-1yTiy Titlye "’ﬁj—l,xj7wj'+1’---yxn) =0.

Proof. [2]. O

2. The Hahn-Banach theorem for the bounded linear
n-functionals

Let L be a real vector space and z is a nonzero element of L. We
denote with P(z) the subspace generated by the vector z.

Theorem 1. Let {z;,...,2,_1} be a linear independent subset of
the n-normed space L, M is a subspace of L and f is a bounded linear
n-functional with domain M X P(z;) X ... X P(2p~1). Then, there is a
bounded linear n-functional F' with domain L x P(z1)X...X P(z,_1) such
that
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1) F(Il), A11719 ce 9/\n—1xn—1) = f(xs Alml’ ey /\n*lxn—l))
for every (z,A\1Z1,..., An-1Zn-1)M X P(z1) X ... X P(7,_1), and

i) [|1FIl = {I£])-
Proof. Let z € L\ M and H = P(M U {z}). If Y1,Y2 € M, then
F@ 21,y Tact) = (Y2, 21y nct) =
= f(y - yg,:cl,...,xn_l) <A lyn = 92,2055 2ol
= 1A (v + 2) = (2 + @), 21, s 2| |
<Ay + 2,215 Tl + g2 + 2521,y 2]
It means that ‘ ’
Ml 4 2,20l = Sz a0
<A Nl + 2,215 s Znafl = F(y1, 21,05 20m1)

Hence,
§= Sllp {_”f“ ”y2+$ Iy,. ,xn—-lll_f(y27x1,---,xn—l)}
Y2

< inf {—”f“ ”yl +$,£L'1,...,.’En_1” - f(yla"vl’---axn—l)} = Sl-
1€EM

Let r be an arbitrary real number such that § < r < §,. If we put
y1 =92 = y in (1), we get

1f(@ 21, za-) + ol S WS- Nlys e, 20,y 2]l (2)
We define n-functional f on H x P(ILl) X ... X P(xn 1) with

fly + Q1L 0081, ..., O Tp1) = (@2 -;..-an)(alr + f(y,a:l,...,mn_l))

We will prove that f is linear and bounded. We have

7(21+W1,22+w2,---,Zn-i-wn)=7(y1+a1z+y2+ﬁ1¢:,a2z1+ﬁ2x1,.--,oznxn-1+ﬂnzn-1) \
=Ty +92 + (1 + A1)z, (@2 + B2)1, .., (@n + Bn)Zn-1)
=(az+B2) .. (o +Bn)((@1 +B0)r + f(y1 +92,21,...,2a21))
=(017‘+f(y1,z1,-- ,xn-l) E t2:... tat (ﬂ1r+f(y2,x1, T 1) Z tz
t; € {a.,ﬂ.} ti € {oy, Bi}

=2, i=2,...,n

Z fn+arz,taz1,. ., tpZn—1)+ E fly2+Prz,t221,...,tnZn-1)

t; € {anﬂ:} t; € {ahﬁt} -
i=2,... 1=2,.

= z —f(zl)“z)"'vun)+ Z 7(“’1,“2!"')“"): Z f(uI:“Zv 1““)
- € {‘zi;wi} ‘ll.,'. € {z;,w,-} u; € {znwz}

1=2,...,n 1=2,...,n i=1,2,...
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and : : :
f(Brz1, 222, .. Bnzn) = (ﬂl(y-f- alx) 32012931,- o> BrotnTn-v)
= f(Bry + a1 b1z, 02f2%1, -+ -y AnPnTn-1) - | ‘
=@ Ber- ... an)r+@r . Bz - A f(Bry, @1,y T )
=B Bal@r-... 0T+ 0y -...-’anf(,:cl,...,:cﬁ_l))
=81 ... Buf(y+012, @281y ., QnTpr)
=B1 ... Buf(zr, 22,5 20) 5
which means that f is alinear n-functional with domain H xP(:c;)x « XP(@n—_y,
It is clear that f = fon M X P(z4) X ... X P(Zn-1).

If in (2) we replace y with p where a # 0 then wehgert

|f(y, 21, .y zn-1) +arl <HSf|] - |ly + @z, 21, 2n-a]], for every a # 0
which implies '

If(y + a1z, 0221, .., QnTpo)|

=lajag ... onr+ 0z 0 f(Y, Ty, T
=lag-...-an|- |a1r+f(y,:c1, » Tn—1)]
Slog-...-aql-Ifll- ||y+alw wl, s -1l
= ”fll ||y+a1a: 21, anfvn 1)||

This means that f is a bounded linear n-functlonal such tha,t H f|| < ]| f |-
But, |[fll = [|fll on M x P(21) X ... x P(zn1), and s |[Al = [Ifl].

We will consider all pairs {X, g}, where X is a subspace of L and g
is a bounded linear n-functional with domain X x P(xl) X ... X P(zp_1).
Put {X,g} < {X1,q1} if and only if X ¢ X, and ¢; is a extension of gs
such that ||g1]| = ||g]|.

Let T be a subset of all {H, f} such that {M f} < {H,f}. Tisa
partially ordered set, in which every linear ordered subset has a maximal
element. From the Corn Lemma if follows that T" has a maximal element
{K,F}, It is clear that K = L, since in contrary can be extended in the
described way. O

Similar as we prove the theorem 1, we can prove the followmg corollary:

Corollary 1. Let {:vl, a:,_l, i+1,-++,Tn} be alinear independent
subset of the n-normed space L Misa subspace of L and fisa bounded
hnear n~-functional Wlth domam -

P(zy) x...X P(i—1) X M x P(m;ﬂ) X ...x P(zy,).
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Then, there is a bounded linear n-functional

F:P(x)X ... X P(2i—1) X L X P(2iy1) X ... X P(zn) = R
§uc11 that ‘
i) F(MZ1, o, Mic1@in1y Ty Aig1Zig1y - - -5 AnZn) =
= f(AZ1, .oy A 1Zic1, T A1 Tig 1y e o5 AnTn)

for every
(Almla s /\i—lwi—17$,)\i+1$i+1, cee ,)\nl'n) €

€ P(z1) X ... X P(zi—1) x M X P(2i41) X ... X P(z,),
i) Pl =11l o : '

Remark. S. Gahler proved that for n = 2 it is not true the general’
case of Hahn-Banach theorem for bounded linear n-functionals. In other
words, for a given bounded linear 2-functional f:G X G — R, G a subspace
of L, in a general case there is no a bounded linear 2-functional f: LxL — R
such that

£ = {|f]| and F(z1,22) = f(21,2;), for every ?01,.3”2 €G. O

Corollary 2. Lét L be an n-normed vector space and zi,...,2Zy,
is a linear independent subset of L. Then there exist bounded linear n-
functionals

Fir P(1) X oo X P(2ic1) X DX P(zig1) X ... X P(2n) = B, i=1,2,....,n

such that
HENl=1 and  fi(21,...,2.) = ll21,..,26)], 1=1,2,...,n.

Proof. It is easy to prove that the mapping

fiP(zy)x...x P(z,) = R
defined by

f,'(/\l.’l,‘l,. ,)\nln) = )\1 LI .AnHIL‘I,...,(I}nH
is a bounded linear n-functional with norm ||f|| = 1. The Corollary 1.
implies that there exist bounded linear n-functionals

firP(z1)x...x P(zi—1) X LX P(Zi41)X... X P(z,) = R, i=1,2,...,n
such that . )

A =1l =1 and fi(zy, ... 20) = f(@1,...,20) = ||21, .., Tnl]
fort=1,2,...,n. 0O ' '
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Definition 3. Let X;, 1 =1,2,...,n be a real vector spaces. We call
the function p: X7 x X9 x ... x X,, — R.
i) apsolutly homogeneous, if
P21, A2T25 s AnTn) = [Ardg - oo A (o1, 22,000, 20),
for every z; € X;,¢=1,2,...,nand every \; € R, i =1,...,n;
i) subaditive, if .
P($1+3/1,332+3/2,---,$n+yn)S Z p(ml)x%'-'oxn)a
z; € {x,yi}

i=1,2,...,n
for every x;,¥; € X, ¢ =1,2,...,n.

Theorem 2. Let L be a real vector vspace’, p L™ . R subaditive
absolutly homogeneous n-functional, M a subspace of L, 24,...,2, € L
and f: M x P(z3) X ... X P(z,) — R is alinear n-functional such that

‘ f(y, A2y s AnZn) < P(Y, A2Z2,. ..y ATy ), for every
yeM andevery MER,i=2,...,n.

Then, there exist linear n-functional F: I x P(z32) % ...x P(z,,) — R such
that :

F(z,Aza,...,An25) < p(&, A2Za,...,ApTy), for every
r €L andevery N €R,1=2,...,n.

and :
F(y, A2, ..., A\nz0) = f(y, A2z, ..., Apn2y), for every

yeEM andevery A, €R, i=2,...,n.

Proof. Let 1 € L\ M and H = P(M U {#,}). For every y;,9o € M
we have , ‘

fyi, 22, 20) = fly2, 22, 2n) = F(41 — Y2, 22, .., Th)
<p(yr —v2,22,. .., %0)
=p(yr + 21— (2 + 1), 22,...,2n)
<plyr + 21,22, .., Tn) + P(—Y2 — T1, T2, ... Ty)

and so

—p(=y2 — 21, T2, ..., 2y) — f(y2,20,.. ., 80) <
S P(?/l + 1‘1,1‘2,...,.27”) - f(th?a"-axn)'

(1)
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Hence
§= sup { p( Yo — a’17$23-‘-a$n)— f(y27$27"-1-77n)}
y2EM ' 2)
< lnf {p(1 + T1,T3 - ) f(yhl‘z, yZg)} =951

Let » be_an arbitrary real number such that § < » < Sy. We define
n-functional f: xP(z3) x ... x P(z,) — R with

7(y+ )‘l-rla’\Za;Z" nxn)‘: (’\27 n)(Alr+ f(yaz% 71:11)) .

Analogly, we prove the Theorem 1, we can prove ‘that f is a linear
n-functional. It is clear that f = f on M x P(#5}% ... x P(z,).
We will prove that 4
Fly+ Mz, Mazay o, dnn) < Py + My, Xo2an' e, Ann),

(3)
Vye M and VA,...,A,€R.

If HA = 0, then (3) follows from the definition of f and the condltlons
i=1

of the theorem. If H/\j > 0, then for every y € M from (1) and (2) follows

=1

r <5 sp(/\%— +,:z1,x-3,...,:cn) ——f(V:\yl—,’mz,...,’z,‘,):

1 I :
= [P(ZH'/\1$1,/\2$2,---»)\n$n)~f(%/\zfvz,---,Anzn)],

I
i=1
and so

TAL e s AptAg o /\nf(y,.’lﬁg, e .,xn)gp(y—{-)\lxl,/\gxg, .. .,)\nitn),

which means that the inequality (3) is true in this case. If H’\i <0, then
i=1
for every ¢ € M from (1) and (2) follows '

r>58> —p<—)‘—yl —.’131,1'2,...,.’1,'n) —f(,\ S, T, ..,xn>

= —p(%,l’g,...,zﬁ) - f(%,zg,...,xn>

[p(y + )\1171, >‘2$27 e 7)‘71:1:71) - f(y”\2x2a cees )‘uxn” ’

i
i=1
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and so
PAL e An F A2 A f(Y, 22y 2n) S P(Y + A1Z1, A2Z2, .y AnTy)

which means that the inequality (3) is true also in this case..
Now the statement of the theorem, as the proof of Theorem 1, fulln\\s :
from the Corn Lemma. O :

3. Connection between bounded linear n-functionals
“and the linear functionals on the quotient
space L\ P(z3,...,Zn-1) -

Let {z1,...,2,-1} be a linear independent subset in the n-normed
space L. We denote with P(zy,...,2,—1) the subspace of L generated by
{1,...,2n-1}, and by Lp the quotlent space L \ P(z1,...,%5-1). For
every a € L we denote by ap the class of equivilence’ of a related to
P(zqy,...,2,-1). Lp is a vector space with opperations aap = (aa)p
and ap + bp = (a + b)p. In Lemma 7, [1] was proved that the function
|lellp: Lp — R defined by

'”aPH_P = Hav Tly.-- amn—lll
is a norm on the quotient space Lp.

Theorem 3. Let f be a hounded linear n-functional with domain L™

and {z1,...,2,-1} is an arbitrary lineary mdependent subset of L. The
functional fp Lp — R defined with
fP(?JP)=f(’lJ,$1,---,$n) S (1)

is linear, bounded and [|fp]| > || f||-
Proof. Let ap, bp € Lp and A € R. We have:
fp(ap+bp) = fr((a+b)p) = fla+b,21,...,8n-1)
= f(aaxla . --,wn—l) + f(b?wlv- . axn—l.) = fP(aP) + fP(bP)

and

fP(/\aP)sz ((/\G)P):f(Aa,l'], .. 'awn—-l):’\f(aazl’ = -‘axn—l):)‘fP(aP)v

which means that fp is a linear functional.
Since fis a bounded llnear n- fu nctional, there is a real constant £ <0 -
such that :

‘If(:t],l'Q,. '-axn—l)l S k“'rly"EZa '--,""‘x:l- 1ot every (xla$27'-'axn) (S Ln
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Hence, for every ap € Lp it is true that
|fp(ap)l = |f(a,21,...,2n-1)| < Klla, 21, ..., 2n1l| = Kllapllp,
and so fp is a bounded functional. Tt is clear that ~
1 fpll = inf {k] |fp(ap)| < kllapllp, ap € Lp}= |
= inf {k| ]f(a,&:l,...,xn_l)'g klla,21,. .., 21|} 2 |If]]. O
The Theorem 3 gives to us the following corollary:

Corollary 3. Let f be a bounded linear n-functional with domain
M x P(zy) X .,. X P(xy,—1) were {z1,...,Zn-1} is a linear independent
set of L, M is a subspace of L and Mp = {zp|lzp € Lp,z € M}. The
functlonal fp:Mp — R deﬁned by fp(yp) = f(y, 1, ,zn..l)_is a linear,
bounded and ||fp|| =71l

Theorem 4. Let {xl, ,Zn_1} be a hneary 1ndependent subset of L
and fp: Lp — R be a linear bounded functional. Then, the n-functional

fiLxP(z1)X...x P(zn_1) = R
defined by o
f((l, /\11‘1, RN /\nelxn—l) = )\_1 .. ./\n_lfp(ap)
is linear, bounded and || f|| = || fpl]-

Proof. Let (y1,%2,...,Yn); (21,22,---,2n) € LxP(wl)X. X P(xp_y).
We have : ' A

F@L+21,92472, ., Un+2a)=F (U142, MTHM1T1, . ., A1 Ty + Bn-1Tn-1)
=y + 2,00+ p1)71, -, Aot + #no1)zn-1) '
=1 +p1) o (Aner +pa-1)fp (31 + 21)p)
=1 +u) o Qner +on1) (Fplyip) + fp(21,))

Z ti...thor fP(yip) + Z ti...ta-1fp(21p) »

t; e{’\ulh} taE‘(}‘nﬂt}
t=1,...,n—1 z--l ,yn—1
= Z : f(yl,t1z1,---,tn—1zn—1)+ Z o f(aL i, te1En )
tze{)\ul‘»:}. B tte{)‘dyul} ‘
i=1,...,n—-1 t=1,...,n~1
= ) frueecu)d Y fGruccuw)= Y flunuze.. )
usE’{yzth} uze{ynzz} . qu{y., 1}

t=2,... e i=2,... : ) 1=12,.
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and
flonz1,0020,...,an2,) = f(alzl,al)\lwl,...,an/\n'_lwn_l)
= (azM) ... (@nAdno1)fr((ea21)p)
=(az-...can)( Ao Apmr) fRlarzip)
=(maz-...can)(Ar .. Anc1)fP(215)
=(maz ... an)f(21,MZ1,. ..y Ap—1Zn-1)

=(maz-...-an)f(z1,22,...,25)

and so f is a linear n-functional. -
Since fp is a bounded linear functional, there is a real constant k£ > 0
such that P o

|fp(ap)l < kllapllp, for every ap€ Lp.
So, for every (21,22,...,2,) € L X P(21) X ... X P(Zp-1) it is true that

[ (21,22, -5 2a)] = | f(21, M1, ooy An1Zn—1)]
= I)‘l ‘---'/\n—lfP(zlp)I < kl’\l '---"\n—ll Hzlp”p
= kl’\lw-*?)‘n—ll ”zl,xl""amn-—lu

= kl|z1, M1, - - An—1Znma || = k)21, 22, .., 20l
which means that f is a bounded linear functional. It is clear that: ’

Nfll=inf{k | |f(z, Mz1,. .y An1Zn-1)| <Ell2, Mi21, .. oy An12n21]l, 2€ L}
=inf{k| |f(z,21,...,2Zn-1)] < kllz,21,...,2n-1l], 2 € L}
=inf{k | |fp(zp)| < k||251l», 2P € Lp}
=|lfell. O

In the end of this work, using Theorem 4 and Corollary 3, we will
present one more proof of the theorem 1. :

It is clear that M is an n-normed space, Mp = {zp |zp € Lp, z € M}
is a subspace of Lp. By the corollary 3 fp: Mp — R, defined ‘with

fP(iIIP) = f($,$1,.. -;?’n—l)

is a bounded linear functional, such that ||fp|| =.|| fl|. In agree with the
Hahn-Banach theorem’fp can be extended to a bounded linear functional
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Fp on Lp such that ||Fp|| = ||fp|| and Fp(zp) = fp(zp), YVzp € Mp. By
Theorem 4, the functional F: L X P(z1) X ... X P(2n—1) — R defined with

~ F(:c, )\11‘1, .. .‘, A'n—lxn—l) = ()\1 el /\n_l)Fp(.’Cp)
is a bounded linear functional such that ||F|| = |[|Fp|| = ||fp|| = || f|| and
for every (2, A\Z1,...,An-1Zn-1) € M X P(21) X ... X P(2n_1) we have

F(.’E, )\1.’1?1, ey )\n_l-’l/'vnt_l‘)}:.’ ()\1 teee /\n—l)FP(xP)
= (/\1 et /\n—l)fP(xP)
= (/\1 taat /\n—l)f(myxlv' "71:"1—1)

= f(xaAlz'lw-',An—lmn—l) .
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TEOPEMA HA XAH-BAHAX 3A OTPAHUYEHU
n-JIMHEAPHHN 2YHKIIMOHAJIN

Pucto Manveckn

Pezume

Bo [5] e BoBemen moMMmoT 3a n-HOpMHpaH mpocTop. Bo oBaa
paboTa ce pa3rielaHM OrpaHUYEHUTE JUHEAPHU 1i-OYHKINOHAIM, HUAB-
HaTa BPCKa CO OrpaHMUeHUTe JVHeapHU (pYHKOIUOHAJIY JeUHUpaHNA Ha
dakTop-npocTop Han (n — 1)-IUMeH3WOHaJeH NOANPOCTOP OI
n-HOPMUpPaH IPOCTOP ¥ aHAJIOTHjaTa Ha TeopeMaTa Ha XaH-BaHax 3a
OTpaHMUEHU JIMHEAPHU N-(yHKINOHAIIMA.
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