Математички Билтен 23 (XLIX) 1999 (47-58) Скопје, Македонија

THE HAHN-BANACH THEOREM FOR BOUNDED n-LINEAR FUNCTIONALS

Risto Malčeski

Abstract

In [5] was introduced the concept of an n-normed space. In this paper are considered n-functionals and it s connection with bounded linear functionals defined on the factor-space on (n-1)-dimensional subspace of a n-normed space and analogy of the Hahn-Banach theorem for the bounded linear n-functionals.

1. Introduction

In this work with L we will denote the n-normed space, in which the n-norm is introduced in [5] as follows:

Let L be a real vector space with dimension greater than n, n > 1 and $\|\cdot, \ldots, \cdot\|$ is a real function on L^n with the following properties:

- i) $||x_1, \ldots, x_n|| \ge 0$, for every $x_1, \ldots, x_n \in L$ and $||x_1, \ldots, x_n|| = 0$ if and only if the set $\{x_1, \ldots, x_n\}$ is linearly dependent;
- ii) $||x_1,\ldots,x_n||=||\pi(x_1),\ldots,\pi(x_n)||$ for every $x_1,\ldots,x_n\in L$ and every bejektion $\pi\colon\{x_1,\ldots,x_n\}\to\{x_1,\ldots,x_n\};$
- iii) $\|\alpha x_1, \ldots, x_n\| = |\alpha| \cdot \|x_1, \ldots, x_n\|$, for every $x_1, \ldots, x_n \in L$ and every $\alpha \in R$;
- iv) $||x_1 + x'_1, \dots, x_n|| \le ||x_1, \dots, x_n|| + ||x'_1, \dots, x_n||$, for every x_1, \dots, x_n , $x'_1 \in L$,

The function $\|\cdot, \ldots, \cdot\|$ is called an *n*-norm on L, and $(L^n, \|\cdot, \ldots, \cdot\|)$ is called *n*-normed space.

Some examples of n-normed spaces are given in [1], [2], [4] and [5].

Definition 1. Let X_i , i = 1, 2, ..., n and Y are real vector spaces. An n-linear operator $A: X_1 \times ... \times X_n \to Y$ is every function $A(x_1, ..., x_n)$, $x_i \in X_i$, i = 1, 2, ..., n, which is linear in every it's argument. If Y is the set of real numbers, then the n-linear operator is called n-linear functional.

It easy to see that the operator (functional) A is a n-linear if and only if

i)
$$A(x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) = \sum_{\substack{z_i \in \{x_i, y_i\}\\ i = 1, 2, \dots, n}} A(z_1, z_2, \dots, z_n)$$
, and

ii)
$$A(\alpha_1x_1, \alpha_2x_2, \ldots, a_nx_n) = \alpha_1\alpha_2 \ldots \alpha_n A(x_1, x_2, \ldots, x_n),$$

 $\alpha_i \in R, i = 1, 2, \ldots, n.$

Definition 2. Let L be a n-normed space. We say that the n-functional f with domain $D(f) \subseteq L^n$ is bounded if there is a real constant $k \geq 0$ such that

$$|f(x_1, x_2, \dots, x_n)| \le k||x_1, x_2, \dots, x_n||$$
, for every $(x_1, x_2, \dots, x_n) \in D(f)$.

If f is a bounded n-functional, we define a norm of f, denoting by ||f||, with

$$||f|| = \inf\{k | ||f(x_1, x_2, \dots, x_n)| \le k ||x_1, x_2, \dots, x_n||, \text{ for every } (x_1, x_2, \dots, x_n) \in D(f)\}.$$

If f is not bounded n-functional, then by definition we put $||f|| = +\infty$.

Lemma 1. Let L be a n-normed space and f is a bounded n-functional with domain $D(f) \subseteq L^n$. If

$$x_i = \lambda x_j$$
, for some $i, j \in \{1, 2, ..., n\}$, $i \neq j$, over $(x_1, x_2, ..., x_n) \in D(f)$, than

$$f(x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_{j-1}, x_j, x_{j+1}, \ldots, x_n) = 0.$$

Proof. [2].

2. The Hahn-Banach theorem for the bounded linear n-functionals

Let L be a real vector space and x is a nonzero element of L. We denote with P(x) the subspace generated by the vector x.

Theorem 1. Let $\{x_1,\ldots,x_{n-1}\}$ be a linear independent subset of the *n*-normed space L, M is a subspace of L and f is a bounded linear n-functional with domain $M\times P(x_1)\times\ldots\times P(x_{n-1})$. Then, there is a bounded linear n-functional F with domain $L\times P(x_1)\times\ldots\times P(x_{n-1})$ such that

i)
$$F(x, \lambda_1 x_1, ..., \lambda_{n-1} x_{n-1}) = f(x, \lambda_1 x_1, ..., \lambda_{n-1} x_{n-1}),$$
 for every $(x, \lambda_1 x_1, ..., \lambda_{n-1} x_{n-1})M \times P(x_1) \times ... \times P(x_{n-1}),$ and

ii) ||F|| = ||f||.

Proof. Let $x \in L \setminus M$ and $H = P(M \cup \{x\})$. If $y_1, y_2 \in M$, then

$$f(y_1, x_1, \dots, x_{n-1}) - f(y_2, x_1, \dots, x_{n-1}) =$$

$$= f(y_1 - y_2, x_1, \dots, x_{n-1}) \le ||f|| \cdot ||y_1 - y_2, x_1, \dots, x_{n-1}||$$

$$= ||f|| \cdot ||(y_1 + x) - (y_2 + x), x_1, \dots, x_{n-1}||$$

$$\le ||f||(||y_1 + x, x_1, \dots, x_{n-1}|| + ||y_2 + x, x_1, \dots, x_{n-1}||).$$

It means that

$$-\|f\| \cdot \|y_2 + x, x_1, \dots, x_{n-1}\| - f(y_2, x_1, \dots, x_{n-1}) \le < \|f\| \cdot \|y_1 + x, x_1, \dots, x_{n-1}\| - f(y_1, x_1, \dots, x_{n-1}).$$

$$(1)$$

Hence,

Series,

$$S = \sup_{y_2 \in M} \left\{ -\|f\| \|y_2 + x, x_1, \dots, x_{n-1}\| - f(y_2, x_1, \dots, x_{n-1}) \right\}$$

$$\leq \inf_{y_1 \in M} \left\{ -\|f\| \|y_1 + x, x_1, \dots, x_{n-1}\| - f(y_1, x_1, \dots, x_{n-1}) \right\} = S_1.$$

Let r be an arbitrary real number such that $S \leq r \leq S_1$. If we put $y_1 = y_2 = y$ in (1), we get

$$|f(y, x_1, \dots, x_{n-1}) + r| \le ||f|| \cdot ||y_+ x, x_1, \dots, x_{n-1}||.$$
 (2)

We define n-functional \overline{f} on $H \times P(x_1) \times \ldots \times P(x_{n-1})$ with

$$\overline{f}(y+\alpha_1x,\alpha_2x_1,\ldots,\alpha_nx_{n-1})=(\alpha_2\cdot\ldots\cdot\alpha_n)(\alpha_1r+f(y,x_1,\ldots,x_{n-1}))$$

We will prove that \overline{f} is linear and bounded. We have

$$\overline{f}(z_1 + w_1, z_2 + w_2, \dots, z_n + w_n) = \overline{f}(y_1 + \alpha_1 x + y_2 + \beta_1 x, \alpha_2 x_1 + \beta_2 x_1, \dots, \alpha_n x_{n-1} + \beta_n x_{n-1})$$

$$= \overline{f}(y_1 + y_2 + (\alpha_1 + \beta_1)x, (\alpha_2 + \beta_2)x_1, \dots, (\alpha_n + \beta_n)x_{n-1})$$

$$= (\alpha_2 + \beta_2) \cdot \dots \cdot (\alpha_n + \beta_n) \Big((\alpha_1 + \beta_1)r + f(y_1 + y_2, x_1, \dots, x_{n-1}) \Big)$$

$$= \Big(\alpha_1 r + f(y_1, x_1, \dots, x_{n-1}) \Big) \sum_{i=2, \dots, n} t_2 \cdot \dots \cdot t_n + \Big(\beta_1 r + f(y_2, x_1, \dots, x_{n-1}) \Big) \sum_{i=2, \dots, n} t_2 \cdot \dots \cdot t_n$$

$$t_i \in \{\alpha_i, \beta_i\} \\
i = 2, \dots, n$$

$$t_i \in \{\alpha_i, \beta_i\} \\
i = 2, \dots, n$$

$$t_i \in \{\alpha_i, \beta_i\} \\
i = 2, \dots, n$$

$$t_i \in \{\alpha_i, \beta_i\} \\
i = 2, \dots, n$$

$$t_i \in \{\alpha_i, \beta_i\} \\
i = 2, \dots, n$$

$$t_i \in \{\alpha_i, \beta_i\} \\
i = 2, \dots, n$$

$$t_i \in \{\alpha_i, \beta_i\} \\
i = 2, \dots, n$$

$$t_i \in \{\alpha_i, \beta_i\} \\
i = 2, \dots, n$$

$$t_i \in \{\alpha_i, \beta_i\} \\
i = 2, \dots, n$$

$$t_i \in \{\alpha_i, \beta_i\} \\
i = 2, \dots, n$$

$$t_i \in \{\alpha_i, \beta_i\} \\
i = 2, \dots, n$$

$$t_i \in \{\alpha_i, \beta_i\} \\
i = 2, \dots, n$$

$$t_i \in \{\alpha_i, \beta_i\} \\
i = 2, \dots, n$$

$$t_i \in \{\alpha_i, \beta_i\} \\
i = 2, \dots, n$$

$$t_i \in \{\alpha_i, \beta_i\} \\
i = 2, \dots, n$$

and

$$\overline{f}(\beta_1 z_1, \beta_2 z_2, \dots, \beta_n z_n) = \overline{f}(\beta_1 (y + \alpha_1 x), \beta_2 \alpha_2 x_1, \dots, \beta_n \alpha_n x_{n-1})
= \overline{f}(\beta_1 y + \alpha_1 \beta_1 x, \alpha_2 \beta_2 x_1, \dots, \alpha_n \beta_n x_{n-1})
= (\beta_1 \dots \beta_n)(\alpha_1 \dots \alpha_n)r + (\beta_2 \dots \beta_n)(\alpha_2 \dots \alpha_n)f(\beta_1 y, x_1, \dots, x_{n-1})
= \beta_1 \dots \beta_n (\alpha_1 \dots \alpha_n r + \alpha_2 \dots \alpha_n f(x_1, \dots, x_{n-1}))
= \beta_1 \dots \beta_n \overline{f}(y + \alpha_1 x, \alpha_2 x_1, \dots, a_n x_{n-1})
= \beta_1 \dots \beta_n \overline{f}(z_1, z_2, \dots, z_n),$$

which means that \overline{f} is a linear *n*-functional with domain $H \times P(x_1) \times \dots \times P(x_{n-1})$. It is clear that $\overline{f} \equiv f$ on $M \times P(x_1) \times \dots \times P(x_{n-1})$.

If in (2) we replace y with $\frac{1}{\alpha}y$ where $\alpha \neq 0$ then we get

 $|f(y,x_1,\ldots,x_{n-1})+\alpha r|\leq ||f||\cdot ||y+\alpha x,x_1,\ldots,x_{n-1}||$, for every $\alpha\neq 0$ which implies

$$\begin{aligned} |\overline{f}(y+\alpha_{1}x,\alpha_{2}x_{1},\ldots,\alpha_{n}x_{n-1})| &= |\alpha_{1}\alpha_{2}\cdot\ldots\cdot\alpha_{n}r + \alpha_{2}\cdot\ldots\cdot\alpha_{n}f(y,x_{1},\ldots,x_{n-1})| \\ &= |\alpha_{2}\cdot\ldots\cdot\alpha_{n}|\cdot|\alpha_{1}r + f(y,x_{1},\ldots,x_{n-1})| \\ &\leq |\alpha_{2}\cdot\ldots\cdot\alpha_{n}|\cdot||f||\cdot||y+\alpha_{1}x,x_{1},\ldots,x_{n-1})|| \\ &= ||f||\cdot||y+\alpha_{1}x,\alpha_{2}x_{1},\ldots,\alpha_{n}x_{n-1})||. \end{aligned}$$

This means that \overline{f} is a bounded linear *n*-functional such that $||\overline{f}|| \le ||f||$. But, $||\overline{f}|| = ||f||$ on $M \times P(x_1) \times \ldots \times P(x_{n-1})$, and so $||\overline{f}|| = ||f||$.

We will consider all pairs $\{X,g\}$, where X is a subspace of L and g is a bounded linear n-functional with domain $X \times P(x_1) \times \ldots \times P(x_{n-1})$. Put $\{X,g\} \prec \{X_1,g_1\}$ if and only if $X \subset X_1$ and g_1 is a extension of g, such that $||g_1|| = ||g||$.

Let T be a subset of all $\{H, \overline{f}\}$ such that $\{M, f\} \prec \{H, \overline{f}\}$. T is a partially ordered set, in which every linear ordered subset has a maximal element. From the Corn Lemma if follows that T has a maximal element $\{K, F\}$, It is clear that K = L, since in contrary can be extended in the described way. \square

Similar as we prove the theorem 1, we can prove the following corollary:

Corollary 1. Let $\{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n\}$ be a linear independent subset of the *n*-normed space L, M is a subspace of L and f is a bounded linear n-functional with domain

$$P(x_1) \times \ldots \times P(x_{i-1}) \times M \times P(x_{i+1}) \times \ldots \times P(x_n)$$
.

Then, there is a bounded linear n-functional

$$F: P(x_1) \times \ldots \times P(x_{i-1}) \times L \times P(x_{i+1}) \times \ldots \times P(x_n) \to R$$

such that

i)
$$F(\lambda_1 x_1, \dots, \lambda_{i-1} x_{i-1}, x, \lambda_{i+1} x_{i+1}, \dots, \lambda_n x_n) =$$

$$= f(\lambda_1 x_1, \dots, \lambda_{i-1} x_{i-1}, x, \lambda_{i+1} x_{i+1}, \dots, \lambda_n x_n)$$

for every

$$(\lambda_1 x_1, \dots, \lambda_{i-1} x_{i-1}, x, \lambda_{i+1} x_{i+1}, \dots, \lambda_n x_n) \in$$

$$\in P(x_1) \times \dots \times P(x_{i-1}) \times M \times P(x_{i+1}) \times \dots \times P(x_n),$$

ii)
$$||F|| = ||f||$$
.

Remark. S. Gahler proved that for n=2 it is not true the general case of Hahn-Banach theorem for bounded linear n-functionals. In other words, for a given bounded linear 2-functional $f\colon G\times G\to R$, G a subspace of L, in a general case there is no a bounded linear 2-functional $f\colon L\times L\to R$ such that

$$||F|| = ||f||$$
 and $F(x_1, x_2) = f(x_1, x_2)$, for every $x_1, x_2 \in G$.

Corollary 2. Let L be an n-normed vector space and x_1, \ldots, x_n is a linear independent subset of L. Then there exist bounded linear n-functionals

$$f_i: P(x_1) \times \ldots \times P(x_{i-1}) \times L \times P(x_{i+1}) \times \ldots \times P(x_n) \to R, \quad i = 1, 2, \ldots, n$$

such that

$$||f_i|| = 1$$
 and $f_i(x_1, \dots, x_n) = ||x_1, \dots, x_n||, i = 1, 2, \dots, n.$

Proof. It is easy to prove that the mapping

$$f: P(x_1) \times \ldots \times P(x_n) \to R$$

defined by

$$f_i(\lambda_1 x_1, \ldots, \lambda_n x_n) = \lambda_1 \cdot \ldots \cdot \lambda_n ||x_1, \ldots, x_n||$$

is a bounded linear n-functional with norm ||f|| = 1. The Corollary 1 implies that there exist bounded linear n-functionals

$$f_i: P(x_1) \times \ldots \times P(x_{i-1}) \times L \times P(x_{i+1}) \times \ldots \times P(x_n) \to R, \quad i = 1, 2, \ldots, n$$
 such that

$$||f_i|| = ||f|| = 1$$
 and $f_i(x_1, \dots, x_n) = f(x_1, \dots, x_n) = ||x_1, \dots, x_n||$ for $i = 1, 2, \dots, n$. \square

Definition 3. Let X_i , $i=1,2,\ldots,n$ be a real vector spaces. We call the function $p: X_1 \times X_2 \times \ldots \times X_n \to R$.

i) apsolutly homogeneous, if $p(\lambda_1 x_1, \lambda_2 x_2, \dots, \lambda_n x_n) = |\lambda_1 \lambda_2 \dots \lambda_n| p(x_1, x_2, \dots, x_n),$ for every $x_i \in X_i$, $i = 1, 2, \dots, n$ and every $\lambda_i \in R$, $i = 1, \dots, n$;

ii) subaditive, if

$$p(x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \le \sum_{\substack{z_i \in \{x_i, y_i\}\\ i = 1, 2, \dots, n}} p(x_1, x_2, \dots, x_n),$$

for every $x_i, y_i \in X_i$, $i = 1, 2, \ldots, n$.

Theorem 2. Let L be a real vector space, $p: L^n \to R$ subaditive absolutly homogeneous n-functional, M a subspace of $L, x_2, \ldots, x_n \in L$ and $f: M \times P(x_2) \times \ldots \times P(x_n) \to R$ is a linear n-functional such that

$$f(y, \lambda_2 x_2, \dots, \lambda_n x_n) \le p(y, \lambda_2 x_2, \dots, \lambda_n x_n),$$
 for every $y \in M$ and every $\lambda_i \in R, i = 2, \dots, n$.

Then, there exist linear n-functional $F: L \times P(x_2) \times \ldots \times P(x_n) \to R$ such that

$$F(x, \lambda_2 x_2, \dots, \lambda_n x_n) \le p(x, \lambda_2 x_2, \dots, \lambda_n x_n),$$
 for every $x \in L$ and every $\lambda_i \in R, i = 2, \dots, n$.

and

$$F(y, \lambda_2 x_2, \dots, \lambda_n x_n) = f(y, \lambda_2 x_2, \dots, \lambda_n x_n),$$
 for every $y \in M$ and every $\lambda_i \in R$, $i = 2, \dots, n$.

Proof. Let $x_1 \in L \setminus M$ and $H \neq P(M \cup \{x_1\})$. For every $y_1, y_2 \in M$ we have

$$f(y_1, x_2, \dots, x_n) - f(y_2, x_2, \dots, x_n) = f(y_1 - y_2, x_2, \dots, x_n)$$

$$\leq p(y_1 - y_2, x_2, \dots, x_n)$$

$$= p(y_1 + x_1 - (y_2 + x_1), x_2, \dots, x_n)$$

$$\leq p(y_1 + x_1, x_2, \dots, x_n) + p(-y_2 - x_1, x_2, \dots, x_n)$$

and so

$$-p(-y_2 - x_1, x_2, \dots, x_n) - f(y_2, x_2, \dots, x_n) \le \le p(y_1 + x_1, x_2, \dots, x_n) - f(y_1, x_2, \dots, x_n).$$
(1)

Hence

$$S = \sup_{y_2 \in M} \left\{ -p(-y_2 - x_1, x_2, \dots, x_n) - f(y_2, x_2, \dots, x_n) \right\}$$

$$\leq \inf_{y_1 \in M} \left\{ p(y_1 + x_1, x_2, \dots, x_n) - f(y_1, x_2, \dots, x_n) \right\} = S_1.$$
(2)

Let r be an arbitrary real number such that $S \leq r \leq S_1$. We define n-functional $\overline{f}: \times P(x_2) \times \ldots \times P(x_n) \to R$ with

$$\overline{f}(y+\lambda_1x_1,\lambda_2x_2,\ldots,\lambda_nx_n)=(\lambda_2,\ldots,\lambda_n)(\lambda_1r+f(y,x_2,\ldots,x_n)).$$

Analogly, we prove the Theorem 1, we can prove that \overline{f} is a linear *n*-functional. It is clear that $\overline{f} \equiv f$ on $M \times P(x_2) \times \ldots \times P(x_n)$.

We will prove that

$$\overline{f}(y + \lambda_1 x_1, \lambda_2 x_2, \dots, \lambda_n x_n) \le p(y + \lambda_1 x_1, \lambda_2 x_2, \dots, \lambda_n x_n),
\forall y \in M \quad \text{and} \quad \forall \lambda_1, \dots, \lambda_n \in R.$$
(3)

If $\prod_{i=1}^{n} \lambda_i = 0$, then (3) follows from the definition of \overline{f} and the conditions

of the theorem. If $\prod_{i=1}^{n} \lambda_i > 0$, then for every $y \in M$ from (1) and (2) follows

$$r \leq S_1 \leq p\left(\frac{y}{\lambda_1} + x_1, x_2, \dots, x_n\right) - f\left(\frac{y}{\lambda_1}, x_2, \dots, x_n\right) =$$

$$= \frac{1}{n} \left[p(y + \lambda_1 x_1, \lambda_2 x_2, \dots, \lambda_n x_n) - f(y, \lambda_2 x_2, \dots, \lambda_n x_n) \right],$$

$$\prod_{i=1}^{n} \lambda_i$$

and so

$$r\lambda_1 \cdot \ldots \cdot \lambda_n + \lambda_2 \cdot \ldots \cdot \lambda_n f(y, x_2, \ldots, x_n) \leq p(y + \lambda_1 x_1, \lambda_2 x_2, \ldots, \lambda_n x_n),$$

which means that the inequality (3) is true in this case. If $\prod_{i=1}^{n} \lambda_i < 0$, then for every $i \in M$ from (1) and (2) follows

$$r \geq S \geq -p\left(-\frac{y}{\lambda_1} - x_1, x_2, \dots, x_n\right) - f\left(\frac{y}{\lambda_1}, x_2, \dots, x_n\right)$$

$$= -p\left(\frac{y + \lambda_1 x_1}{-\lambda_1}, x_2, \dots, x_n\right) - f\left(\frac{y}{\lambda_1}, x_2, \dots, x_n\right)$$

$$= -\frac{1}{n} \left[p(y + \lambda_1 x_1, \lambda_2 x_2, \dots, \lambda_n x_n) - f(y, \lambda_2 x_2, \dots, \lambda_n x_n)\right],$$

$$-\prod_{i=1}^{n} \lambda_i$$

and so

$$r\lambda_1 \cdot \ldots \cdot \lambda_n + \lambda_2 \cdot \ldots \cdot \lambda_n f(y, x_2, \ldots, x_n) \leq p(y + \lambda_1 x_1, \lambda_2 x_2, \ldots, \lambda_n x_n)$$
.

which means that the inequality (3) is true also in this case.

Now the statement of the theorem, as the proof of Theorem 1, follows from the Corn Lemma. \Box

3. Connection between bounded linear n-functionals and the linear functionals on the quotient

space
$$L \setminus P(x_1, \ldots, x_{n-1})$$

Let $\{x_1,\ldots,x_{n-1}\}$ be a linear independent subset in the n-normed space L. We denote with $P(x_1,\ldots,x_{n-1})$ the subspace of L generated by $\{x_1,\ldots,x_{n-1}\}$, and by L_P the quotient space $L\setminus P(x_1,\ldots,x_{n-1})$. For every $a\in L$ we denote by a_P the class of equivalence of a related to $P(x_1,\ldots,x_{n-1})$. L_P is a vector space with opperations $\alpha a_P=(\alpha a)_P$ and $a_P+b_P=(a+b)_P$. In Lemma 7, [1] was proved that the function $\|\bullet\|_P:L_P\to R$ defined by

$$||a_P||_P = ||a, x_1, \dots, x_{n-1}||$$

is a norm on the quotient space L_P .

Theorem 3. Let f be a bounded linear n-functional with domain L^n and $\{x_1, \ldots, x_{n-1}\}$ is an arbitrary lineary independent subset of L. The functional $f_P: L_P \to R$ defined with

$$f_P(y_P) = f(y, x_1, \dots, x_n) \tag{1}$$

is linear, bounded and $||f_P|| \ge ||f||$.

Proof. Let a_P , $b_P \in L_P$ and $\lambda \in R$. We have:

$$f_P(a_P + b_P) = f_P((a+b)_P) = f(a+b, x_1, \dots, x_{n-1})$$

= $f(a, x_1, \dots, x_{n-1}) + f(b, x_1, \dots, x_{n-1}) = f_P(a_P) + f_P(b_P)$

and

$$f_P(\lambda a_P) = f_P((\lambda a)_P) = f(\lambda a, x_1, \dots, x_{n-1}) = \lambda f(a, x_1, \dots, x_{n-1}) = \lambda f_P(a_P),$$

which means that f_P is a linear functional.

Since f is a bounded linear n-functional, there is a real constant $k \leq 0$ such that

$$|f(x_1, x_2, \dots, x_{n-1})| \le k||x_1, x_2, \dots, x_n||$$
 for every $(x_1, x_2, \dots, x_n) \in L^n$.

Hence, for every $a_P \in L_P$ it is true that

$$|f_P(a_P)| = |f(a, x_1, \dots, x_{n-1})| \le k||a, x_1, \dots, x_{n-1}|| = k||a_P||_P$$

and so f_P is a bounded functional. It is clear that

$$||f_P|| = \inf \{k | |f_P(a_P)| \le k ||a_P||_P, \quad a_P \in L_P\} =$$

$$= \inf \{k | |f(a, x_1, \dots, x_{n-1}) \le k ||a, x_1, \dots, x_{n-1}||\} \ge ||f||. \quad \Box$$

The Theorem 3 gives to us the following corollary:

Corollary 3. Let f be a bounded linear n-functional with domain $M \times P(x_1) \times \ldots \times P(x_{n-1})$ were $\{x_1, \ldots, x_{n-1}\}$ is a linear independent set of L, M is a subspace of L and $M_P = \{x_P | x_P \in L_P, x \in M\}$. The functional $f_P \colon M_P \to R$ defined by $f_P(y_P) = f(y, x_1, \ldots, x_{n-1})$ is a linear, bounded and $||f_P|| = ||f||$. \square

Theorem 4. Let $\{x_1, \ldots, x_{n-1}\}$ be a lineary independent subset of L and $f_P: L_P \to R$ be a linear bounded functional. Then, the n-functional

$$f: L \times P(x_1) \times \ldots \times P(x_{n-1}) \to R$$

defined by

$$f(a, \lambda_1 x_1, \dots, \lambda_{n-1} x_{n-1}) = \lambda_1 \dots \lambda_{n-1} f_P(a_P)$$

is linear, bounded and $||f|| = ||f_P||$.

Proof. Let (y_1, y_2, \ldots, y_n) ; $(z_1, z_2, \ldots, z_n) \in L \times P(x_1) \times \ldots \times P(x_{n-1})$. We have

$$f(y_{1} + z_{1}, y_{2} + z_{2}, \dots, y_{n} + z_{n}) = f(y_{1} + z_{1}, \lambda_{1}x + \mu_{1}x_{1}, \dots, \lambda_{n-1}x_{n-1} + \mu_{n-1}x_{n-1})$$

$$= f(y_{1} + z_{1}, (\lambda_{1} + \mu_{1})x_{1}, \dots, (\lambda_{n-1} + \mu_{n-1})x_{n-1})$$

$$= (\lambda_{1} + \mu_{1}) \cdot \dots \cdot (\lambda_{n-1} + \mu_{n-1})f_{P}((y_{1} + z_{1})_{P})$$

$$= (\lambda_{1} + \mu_{1}) \cdot \dots \cdot (\lambda_{n-1} + \mu_{n-1})(f_{P}(y_{1_{P}}) + f_{P}(z_{1_{P}}))$$

$$= \sum_{\substack{t_{1} \in \{\lambda_{i}, \mu_{i}\}\\ i = 1, \dots, n-1}} t_{1} \dots t_{n-1}f_{P}(y_{1_{P}}) + \sum_{\substack{t_{1} \in \{\lambda_{i}, \mu_{i}\}\\ i = 1, \dots, n-1}} t_{1} \dots t_{n-1}f_{P}(z_{1_{P}})$$

$$= \sum_{\substack{t_{1} \in \{\lambda_{i}, \mu_{i}\}\\ i = 1, \dots, n-1}} f(y_{1}, t_{1}x_{1}, \dots, t_{n-1}x_{n-1}) + \sum_{\substack{t_{1} \in \{\lambda_{i}, \mu_{i}\}\\ i = 1, \dots, n-1}} f(z_{1}, t_{1}x_{1}, \dots, t_{n-1}x_{n-1})$$

$$= \sum_{\substack{t_{1} \in \{\lambda_{i}, \mu_{i}\}\\ i = 1, \dots, n-1}} f(y_{1}, u_{2} \cdot \dots \cdot u_{n}) + \sum_{\substack{t_{1} \in \{y_{i}, z_{i}\}\\ i = 2, \dots, n}} f(z_{1}, u_{2} \cdot \dots \cdot u_{n}) = \sum_{\substack{t_{1} \in \{y_{i}, z_{i}\}\\ i = 1, 2, \dots, n}}} f(u_{1}, u_{2} \cdot \dots \cdot u_{n})$$

and

$$f(\alpha_1 z_1, \alpha_2 z_2, \dots, \alpha_n z_n) = f(\alpha_1 z_1, \alpha_1 \lambda_1 x_1, \dots, \alpha_n \lambda_{n-1} x_{n-1})$$

$$= (\alpha_2 \lambda_1) \cdot \dots \cdot (\alpha_n \lambda_{n-1}) f_P((\alpha_1 z_1)_P)$$

$$= (\alpha_2 \cdot \dots \cdot \alpha_n) (\lambda_1 \cdot \dots \cdot \lambda_{n-1}) f_P(\alpha_1 z_{1_P})$$

$$= (\alpha_1 \alpha_2 \cdot \dots \cdot \alpha_n) (\lambda_1 \cdot \dots \cdot \lambda_{n-1}) f_P(z_{1_P})$$

$$= (\alpha_1 \alpha_2 \cdot \dots \cdot \alpha_n) f(z_1, \lambda_1 x_1, \dots, \lambda_{n-1} x_{n-1})$$

$$= (\alpha_1 \alpha_2 \cdot \dots \cdot \alpha_n) f(z_1, z_2, \dots, z_n)$$

and so f is a linear n-functional.

Since f_P is a bounded linear functional, there is a real constant $k \geq 0$ such that

$$|f_P(a_P)| \le k||a_P||_P$$
, for every $a_P \in L_P$.

So, for every $(z_1, z_2, \ldots, z_n) \in L \times P(x_1) \times \ldots \times P(x_{n-1})$ it is true that

$$|f(z_1, z_2, \dots, z_n)| = |f(z_1, \lambda_1 x_1, \dots, \lambda_{n-1} x_{n-1})|$$

$$= |\lambda_1 \cdot \dots \cdot \lambda_{n-1} f_P(z_{1_P})| \le k|\lambda_1 \cdot \dots \cdot \lambda_{n-1}| ||z_{1_P}||_P$$

$$= k|\lambda_1, \dots, \lambda_{n-1}| ||z_1, x_1, \dots, x_{n-1}||$$

$$= k||z_1, \lambda_1 x_1, \dots, \lambda_{n-1} x_{n-1}|| = k||z_1, z_2, \dots, z_n||_P$$

which means that f is a bounded linear functional. It is clear that:

$$\begin{split} ||f|| &= \inf \{ k \mid |f(z, \lambda_1 x_1, \dots, \lambda_{n-1} x_{n-1})| \le k ||z, \lambda_1 x_1, \dots, \lambda_{n-1} x_{n-1}||, \ z \in L \} \\ &= \inf \{ k \mid |f(z, x_1, \dots, x_{n-1})| \le k ||z, x_1, \dots, x_{n-1}||, \ z \in L \} \\ &= \inf \{ k \mid |f_P(z_P)| \le k ||z_P||_P, z_P \in L_P \} \\ &= ||f_P||. \quad \Box \end{split}$$

In the end of this work, using Theorem 4 and Corollary 3, we will present one more proof of the theorem 1.

It is clear that M is an n-normed space, $M_P = \{x_P \mid x_P \in L_P, x \in M\}$ is a subspace of L_P . By the corollary $3 f_P : M_P \to R$, defined with

$$f_P(x_P) = f(x, x_1, \dots, x_{n-1})$$

is a bounded linear functional, such that $||f_P|| = ||f||$. In agree with the Hahn-Banach theorem f_P can be extended to a bounded linear functional

 F_P on L_P such that $||F_P|| = ||f_P||$ and $F_P(x_P) = f_P(x_P)$, $\forall x_P \in M_P$. By Theorem 4, the functional $F: L \times P(x_1) \times \ldots \times P(x_{n-1}) \to R$ defined with

$$F(x, \lambda_1 x_1, \dots, \lambda_{n-1} x_{n-1}) = (\lambda_1 \cdot \dots \cdot \lambda_{n-1}) F_P(x_P)$$

is a bounded linear functional such that $||F|| = ||F_P|| = ||f||$ and for every $(x, \lambda_1 x_1, \dots, \lambda_{n-1} x_{n-1}) \in M \times P(x_1) \times \dots \times P(x_{n-1})$ we have

$$F(x, \lambda_1 x_1, \dots, \lambda_{n-1} x_{n-1}) = (\lambda_1 \cdot \dots \cdot \lambda_{n-1}) F_P(x_P)$$

$$= (\lambda_1 \cdot \dots \cdot \lambda_{n-1}) f_P(x_P)$$

$$= (\lambda_1 \cdot \dots \cdot \lambda_{n-1}) f(x, x_1, \dots, x_{n-1})$$

$$= f(x, \lambda_1 x_1, \dots, \lambda_{n-1} x_{n-1}).$$

References

- [1] Малчески, Р.: Забелешки за п-нормирани простори, Математички билтен **20** (1996), 33-50
- [2] Malčeski, R.: Strong n-convex n-normed spaces, Математички билтен 21 (1997), 43-64
- [3] Maleski, R.: Strong convex n-normed spaces, Macedonian Academy of Science and Arts, Contributions, XVIII (1997), 39-57
- [4] Malčeski, A. Malčeski, R: $L^1(\mu)$ as a n-Normed Space, Годишен зборник на институтот за математика, **38** (1997), 23-30
- [5] Misiak, A.: n-Inner Product Spaces, Math. Nachr. 140 (1989), 299-319
- [6] Kurepa S.: Funkcionalna analiza, Školska knjiga, Zagreb (1981).

ТЕОРЕМА НА ХАН-БАНАХ ЗА ОГРАНИЧЕНИ п-ЛИНЕАРНИ ФУНКЦИОНАЛИ

Ристо Малчески

Резиме

Во [5] е воведен поимот за n-нормиран простор. Во оваа работа се разгледани ограничените линеарни n-функционали, нивната врска со ограничените линеарни функционали дефинирани на фактор-простор над (n-1)-димензионален подпростор од n-нормиран простор и аналогијата на теоремата на Хан-Банах за ограничени линеарни n-функционали.

Faculty of Natural Sciences and Mathematics
University "St. Kiril and Metodij"
P. O. Box 162
91000 Skopje
Republic of Macedonia