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A CRITERION FOR POLYNOMIAL DECOMPOSITION

Petar R. Lazov

Abstract
Let B = B(z) be a complex polynomial for which
deg B(z) = m-n, m > 1, n > 2, m,n € N. In this work
we state a criterion for the following proposition to hold:
there exist complex polynomials y = y(z), degy(z) =m
and u = u(z), degu(z) = n, such that

B(z) = u(y(:c))

In addition, as an auxilary result we obtain a theorem that
completely solves the problem of the polynomial solutions of the
algebraic equation

B(z)=co+ec1-y+---+en-1 9" L 4en -y,
giving also an algorithm for finding them.

1. All the polynomials, considered in this work (except the ones from
remark in section 2), will be complex (i.e. elements of C[z]) and that will
not be mentioned below. :

Let B = B(z) be a given complex polynomial (i.e. an element of C{z])
for the degree of which it holds:

deg B = m - n, m>1, n>2, m,neN (1.1)

Keywords: - polynomial decomposition, polynomial solution of algebraic equation,
polynomial part of a n—th root of polynomial.
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The main goal of this work is to establish a criterion for decomposition
of B(z) into two polynomials of degrees m and n i.e. a criterion for the
following condition to hold:

there exist complex polynomials y = y(z), deg y(a:) =m
andu = u(z), degu(z) = n, such that

B(z) = u(y(2)) ..(D)

For the purpose of this paper, we use the following equivalent form of the
condition (D):

there exist complex constants b, b1, ..., by(b, # 0)

and a complex polynomial y = y(z)such that:

B(z) =bo+bi-y+by-y’+- - +bur -y +byy" (1.2)
By [\"/ B(m)} we shall denote the polynomial part of the expansion of

Y/ B(z) in decreasing powers of x. More precisely, we have the following
definition:

Definition: If
B(CI)) =fo- ™"+ B+ g™t + 4 Bmnc1 -+ Bmn, Po 7£ 0,

B;:€C(t=0,1,...,m-n), m>1,n>2, then:

(i) = #{ime e [0 (1) (g5 0 e o

2
1/n) ( P Bm-n ) ] }
+ . — + P + —_— + eee ,
( 2 Po -z Bo - z™ "
where p - p stands for the polynomial part, and ¥/F, is some fixed value of

a root of degree n of §y. Therefore, [\"/B(:c)] is a plynomial of degree m

determined up to a factor which is an n—th root of 1. The polynomials §
and @ are specified as: .

§=[¥B@)], B=5"+q. (1.3)

. In several works, starting with [6] (where n = 2 is considered), the
polynomials S and @, determined as (1.3), are used to describe some poly-
nomials solutions of algebraic differential equations of the Riccati type.




45
If A= A(z) is a polynomial, then we shall denote by (A); its mean on
the interval [0, 1]: v
1
(A)i =] A(t)-dt. (1.4)
0 :
Using the notations introduced, we can formulate the main results of this
- work.
Theorem 1. Let B = B(z) be a polynomial whose degree satisfies
(1.1). Then (D) holds iff there exists a complex constant ¢ such that:

Loy (@-c, S, 8%, ..., 5™%) =

(QQ)i—c(@)i=eQ)i+cT (@F)i—c(8)i ... (@™ )i—e(E8™);
_ (5Q)i—e(S): ($-8) ... (557 |_o
(S"'Qa)i—;c—(sn-z)i (Sn-—2 . ?)z . (S"'_2 . 3—#—2)1"
. (1.5)

where the polynomials S and @ are specified in (1.3). It can be seen (e.g.
by looking at the expansmn of this determinant by the first column) that
the left—hand side of (1.5) is of the type:

a-c-c+pf-c+y-c+6.
Therefore (D) is reduced to the condition that an equation of the type:

a-z-T+P-+7-T+6=0 o | (1.6)

with known complex constant a, 3, 7, 6§, have roots in C' and easily verifi-
able (establishing the conditions for (1.6) to have roots in C is the simplest
exercise).

Theorem 1 for n = 2 can be stated in the followmg simple form.
Corollary 1. Let B = B(z) be a polynomial of degree m, m > 1. Then

there exist complex constant b, by, b2.»(b2 # 0),
and a polynomial y = y(z), such that

B=bo+b-y+b-y’,

B(z) — [m]z = const.

ift
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We shall prove Theorem 1 in next section usmg another result, Whlch
is significant in its own right.

2. In this section we formulate necessary and sufficient conditions for
the algebraic equatlon

B(g)=cotci-yter-y?+ - +en1-y" 7 +en-y", (2.1)

where n > 2, cg, €1,-.., Cn-1, €, are complex constants (¢, # 0) and
B = B(z) is a polynomial, to have polynomial solutions. We also determine
the explicit form of the polynomial solutions of (2.1).

If the degree of the polynomial B = B(z) is not a multiple of n, then,
clearly, equation (2.1) has no polynomial solutions (exsept the trivial case
when B(z) is a constant). Therefore we shall restrict our attention to the
case deg B = m-n, m > 1. We shall also suppose that ¢,, = 1, which does
not diminish the generality of the problem considered.

Theorem 2. Let B = B(z) be a polynomial, n > 2 be a natural number
and ag, a3, ..., @y—2 be a complex constants. If degB = m-n, m > 1,
then the equation:

B(z)=ap+a;-v+a;-v' + -+ ap_g-0"% 40" (2.2)

has polynomial solutions v iff there exist a number ¢t € {1, 2,..., n} suh
that:

Q = ao + a1(wiS) + az(wi8)* + -+ + ap_g(wS)"72, (2.3)

" where S and Q are given by (1.3), and wy, wy, ..., wy are all the nt® roots
¢ of 1; also, if for some t = tp(a < top < n) (2.3) holds, then the polynomial
¥ = wy, -3 is an solution of (2.2) and this equation cannot have polynommial
. solutions other than v =w; -5, t=1,2,..., n.

Corollary 2. Let B = B(z) be a polynomial, ¢, = 1, ¢p, €1, ..+, €n-1

. complex constants. If deg B = m-n, m > 1, n > 2, then equation (2.1)

has a polynomial solution iff there exists a number ¢ € {1, 2,..., n} sush
that (2.3) holds, where the constants ag, a;,..., a,_y are specified as:

k .
ewr =3 (RT1) b, s,
i=0 )
a:—cn_l, k=2,3,...,n; (2.4)
n

if (2.3) holds for some ¢ € {1, 2, ..., n}, then the polynomial

y=w-5— fn1 (2.5)

n
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is a solution of (2.1) and this equation cannot have polynomial solutions
other than the functions (2.5) for ¢t = 1, 2,

So Corollary 2 completely solves the problem of polynomial solutions
of the algebraic equation (2.1), including the algorithm for finding them.
Let us note that the polynomial solutions of equation (2.1) (for ¢, = 1),
when they exist, do not depend on the constants cg, ¢1, ..., ¢y—2, but only
on ¢,—1 and B(z). :

Ezample. For the equation

B=2z%+(2+3) ' +(-6+4i) 2> -2~ 4i =

(2.6)
=y’ +2-y" -3y
we have:
1 13 8 13
3 2 . 3 2 :
prmnt = —_ : B —_————
§=|VB|=c+3-2+3), Q=B-§=-212"-— 3
70 13
=0, ¢g=-3, =2, G = 5= 01~ 5,

so the condition (2.3) is (n = 3):

3 , 8 13, 70 13 ., 243 5
kg S S 22w ‘ . =1.t=1.2
3 T o7 3 1= 27 3 wi (.’1) + 3 )7 (wt ’ ) a3),

which is an identity for w; = 1. Now, by (2.5) we obtain that the polyno-
mial:

y:z2+%(2+3z)——§—:z2+l

is only polynomial solution of the equation (2.6).

Remark. Let B= B(t) be a real polynomial and cg, ¢1,...,¢cn—1(cp=1)
be real constants. Let us, similarly as in section 1, denote by [\"/B(t)] the

real polynomial part of expansion of {/B(t) in decreasing powers of t (if
n is even, then we suppose that the highest coefficient of the polynomial
B(t) is positive). -Then, necessary and sufficient conditions for the equation
(2.1) to have real polynomla.l solutions.can be obtained as a corollary of
theorem 2 an corollary 2. We considered this case in [4].

We shall prove theorem 2 in next section as a corollary of a more
_ general statement (theorem 3), which is significant in itself in connection
with polnomial solutions of algebraic equations in two variables. We shall
prove theorem 1 using theorem 2.
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Proof of theorem 1. Let B = B(z) be a polynomial, for the degree of
which (1.1) holds. Then the condition

there exist complex constants cg, ¢, ..., €r—1
and a polynomial y = y(z)such that ‘
B($)260+C1‘y+"'+cn—l'yn—l +yn, (27)

is equivalent to the condition:

there exist complex constants ag, a1, ..., Gp_2
and a polynomial v = v(z)such that

B—ag=01-v+8; 0"+ +an_y-v""t + 0" (2.8)

The condition (2.8), considering theorem 2, is equivalent to (for n > 3) the
condition

there exist a number ¢t € {1, 2, ..., n} and a complex constant ¢
such that the polynommial @ — ¢
a linear combination of the plynomials w;S, (w:$)%, ..., (WS Y2

(where § and @ are determined by (1.3)) i.e. to the condition

there exists a complex constant c¢ such that the polynomial
Q — cis a linear combination of the polynomials §, §2%,..., "2

which, due to linear indepedence of the polynomials S, S?, ..., S"~2, is

< equivalent to the condition

there exists a complex comstant ¢ such that the polynomials
Q—c, S5,5% ..., 5" %are linearly dependent.

2 This last condition (which is equivalent, to (2.8) and for n = 2) is equivalent
¢ for instance, to

there exists a complex constant ¢, such that the polynomials
Q-c, 8, 8%, ..., 8" 2are linearly dependent on [0, 1]. (2.9)

The polynomials form a unitary space on [0, 1] with the scalar product
1 _
(A, B) = [ A(T) - B(7)dr
0
from which follows (e.g. [3, pp.207-208]-condition for linear dependence

of a finite number of vectors of unitary space) that the condition (2.9) is
fulfilled iff there exists a complex constant ¢ such that
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g(Q(r)_c) . (@M)-7) -dr Z(Q(r)_c) 5 dr ... z(Q(T)_c)m"'z dr

1 e 1 —_— 1 ——n2

[8(r)- (@) %) -dr [5(r)-S(r)-dr ... [S(r)-S(n)" -dr |_,
1] 0 0 -
1 _ 1 - 1 — 2
UfS"”(T)-(Q(f)—E)‘dT 0/5"—2(1-)-5(r).dr gs"-z(r)-S(r) -dr

which, after (1.4), reduces to (1.5). The fact that (2.7) is equivalent to
(1.2), completes the proof of the theorem1.

3. Let us consider the algebraic equation
Buo(w) . y’Uo + B’ul(z) . yv1 e an(z) . yv,, =0

0<v <v < -+ < vy, n>1, v, >2, (3.1)

where B,, = B, (z) (k=0,1,...,n) is a polynomial of degree b,, .
Clearly, the degrees of the polynomial solutions of the equation (3.1)
can only be the numbers:

b’U _b’UJ . . ..
T:‘—’l;i'-————:vT ('t<]; l,]:Oa]-’"',n) (32)

if they are non negative integers.
For fixed ¢ and j (where ¢ < j), for which b,, — b,, is a multiple of
g = vj — v;, the polynomials § = S(z) and @ = Q(z) shal be determined

" S = [{/—BU‘/BUJ.I , qg=v;— v, (3.3)

—B,, =B, -57+Q. (3.4)

These polynomials have been introduced in [5] to describe some polynomial
solutions of Riccati-type algebraic differential equations. It can be shown
that ([1], [5] or more fully [2. pp. 82-83]):

deg @ < by, +(g—1)deg§, q=v;—v; (3.5)

and also

the pair (5, @), with S taken up to a factor of a g-th root unity,
is the only pair of polynomials for which (3.4) and (3.5) hold. (3.6)
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Following the procedure of [5], we shall prove the next theorem.

Theorem 3. Let 1 < j, 0 <3, j < n and let b,, — b,; be a multiple of
g = v; — v;. If the coeflicient conditions hold:

(’l)]' -V — 1)bu'. - (’U,’ — Vg — 1)b1,j
(7 il

by, < (k=0,1,...,n; k#14,7), (3.7)

then the equation (3.1) has polynomial solutions of degree (3.2) iff there
exists a number ¢t € {1, 2,..., ¢} such that

Q- (w8 = Y By -(w-9)™, (3.8)
k=0
k#i, j

where the polynomials § and @ are determined by (3.3) and (3.4) and
w1,Wa, - - .,w, ate the ¢'M roots of 1; if (3.8) holds for same t=1o(1 < <),
then the polynomial y = w;, - S is a solution of (3.1) and the equation (4.1)
cannot have polynomial solutions of degree (3.2), other than the function
y=w;-S5,t=1,2,...,¢q.

Proof. Assuming that the coefficient conditions (3.7) hold, we deter-
mine polynomials S and @ by (3.3) and (3.4). Because of (3.4), we can
write the equation (3.1) as:

By, -(y% = 8%V ") =Q - y” = — Z B, -y**. (3.9)
k=0
k#id,j

Let the polynomial y = y(z) of degree r, specified by (3.2), be a solution
of the equation (3.1). Using (3.5) and (3.7) for k # 1, j, we obtain easily

deg (By, -y"*), deg (@ -y") < (v; —1)-7 4 by,

after which, considering that (3.9) is assumed to be an identity assuming
further that y = ap-z"+a,_y-2" 14+ 4ag, § = 802" +5,_1-2" 14+ 4350,
and equating the coefficients of terms with degree v;-r, v;-r—1, ..., v;-r—7
of y¥ and §% ~% - y¥ we obtain by elementary calculation that y = w¢- S
for some t € {1,2,...q}. Hence, substituting into (3.9), the condition
(3.8) follows directly. Conversaly, if the condition (3.8) holds for same
te{l1,2,...,q} then, because of the fact that, by (3.4),
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Bv!_ . (wt . S)"j + Bv.- . (wt . S)V-‘ = _Q . (wt . S)”‘ ,
it immediately follows that y = w; - § is a solution of (3.1). Taking (3.6)
into consideration completes the proof.

Proof of theorem 2. Let us apply theorem 3 to the equation (2.2),
taking v; = v = 0, v; = vy = n (here vy =k, k=1,2,...,n—2).
The coefficient conditions (3.7) are trivially fulfilled in this case. Clearly,
the equation (2.2) can have polynomial solutions of degree m = deg B/n
only. In this case the polynomials S and @ are determined by (1.3)
(By, = Bo = =B, By, = Bn =1, wj — vi = n) because of which (3.8)
reduces to (2.3). ' L

DTN
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KPUTEPUYM 3A lIEKOMIIOBPIIIPIJA
HA IIOJIMHOMU

ITerap II. JlazoB
" PesmmMme

Heka B = B(z) e KOMIIeKceH DOIUHOM 33 Y¥j CTelleH BaKH:
stB(z)=m:n, m>1, n>2 m,neN.

Bo pa6oTaTa e n06uer KpuTepuyM (TeopeMa 1) 3a neKoMyIQauIHMja
Ha NoauMHOMOT B(z) T.e. 3a Baxeme Ha CJIEIHMOT pesynrar

HOCTOjaT KOMIJIEKCHHM HOJMHOMH y = y(z) co sty (z) =m n
u = u(z) co stu(z)=n taxsum mro B(z) = u(y(z)).

Kpurepuymor e edextuBHO npoBepiauB. [loMomEMOT pesynaraT mTO
OpuTOa ce KOPUCTH (TeopeMa 2, ONHOCHO @oclelwna 2), OX CBOja
CTpaHa, KOMIJIETHO IO pemlaBa OpoGieMOT 3a NOJHOMOUIHHTE pell-
eHdja Ha aarebapckaTa paBeHKa
B(z)=cotecr-y+ - tenr-y" 49",

BKJIy4YyBajKu M aJI'OPATMH 3a HMBHO Haolame. TeopeMmaTa 2 e cuenu-
jalleR ciaydaj Ha MHOTY OOONIITOTO TBpAewme (TeopeMa 3) 3a aire-
f6apckuTe paBeHKM OJl [Be OPOMEHJMBH, NOKAKaHO BO HOJICeIHATA
TOuKa on paboraTta.
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