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SOME CLASSES OF ' - CONVERGENCE
OF FOURIER SERIES

Zivorad Tomovski

Abstract

We study here Ll—convgrgence of a trigonometric series, i.e.
the extension is made for the C. V. Stanojevic and V. B. Stanajevic
theorem [5] and also for the theorem proved by the author in[7].
Namiely, the new necessary-sufficient conditions for LY-convergence
of Fourier series with §-quasi-monotone coefficients are obtained.

. Then it is verified that the three classes of Fourier coefficients
defined by Fomin; C. V. Stanojevic, V. B. Stanrojevic and the
author of the present note, are identical.

1. Introduction

It is well known that if a trigonometric series converges in L! to a
function f € L! then it is the Fourier series of the function f. Let {cx:k =
0,+1,42,...} be a sequence of complex numbers, and the partial sums of
the complex trigonometric series

Z cne'™t (1))

In|<o0

" .
be denoted by Sp(c,t) = Z cpe'*t, t € T, where T is the unit circle.

k=-n
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If the trigonometric series is the Fourier series of some f € L!, we
shall write ¢, = f(n), for all n and Sp(c,t) = Sa(f,t) = Sp(f). Let
n

E.(t) = Eeikt.

The c=omplex form of the above modified trigonometric sums is
gnlc,t) = Su(c,t) = (cnEn(t) + c—nE_n(t)).
We assume that {c,} isa null sequence i.e.

lim ¢, =0. (1.2)

In]—c0

A complex null sequence {c,} satisfyng

(o]

E |A(en — c—p)]logn < oo (1.3) F

n=1

is called weakly even. It is obvious that if {¢,} is an even sequence then it is
weakly even. C. V. Stanojevic and V. B. Stanojevic introduced a class S

defined as follows: Aweakly even null sequence {c,} of complex numbers
belongs to the class S, if for some 1 < p < 2 and some monotone sequence

{An} such that ZA < oo the condition EIAckI = O(1) holds.
n=1
They [5] proved the following theorem:
Theorem A. Let {c,} € S;, 1 <p< 2. Then
(i) fort#0, lim S,(C,t) = f(t) exists.

(ii) fe LY(T) )
(iii) ||Sa(f) = fll = o(1), n — oo is equivalent to f(n)log|n| = o(1),

n — 00.

On the other hand, a sequence {Aj} is said to be 6-quas1 monotone if
A, — 0, A >0 ultlmately and AA; > 6k, where {6} is a sequence of -
positive numbers.

We introduce here a new class 55 (8), 1 < p <2, @ > 0 of sequence
as follows. A weakly even sequence {cy} of complex numbers satisfies con-
ditions S5,(6), or ¢x € §,,(6) if ex — 0 as k — oo, and there ex1sts a
sequence ‘of numbers {Ak} such that:

o0
a) {Ax} is é-quasi-monotone and Zk““ﬁk < 00
k=1
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= 1 IAckl
b) Zk“Ak <oo ¢ pat z = 0(1).
k=1
Let {c,} is an even and real sequence (c_;c = ¢ = ag, for all k). Then
series (1.1) is a cosine series:

[o <] o0
Z e = 2 (%’ + E aj cos ka:) . (©)
k=1

k=-00

In this case, we denote S5 = §,. But in [6], we defined a new integra-

bility class Sp(6), p > 1 (case a = 0). Later the author of the present note
proved the following theorem.

Theorem B [8] For any p > 1, the classes S, and 5,(6) are identical.
Fomin [3] have defined a class Fp, p > 1 of Fourier coefficients as
follows: a sequence {ax} belongs to Fp, p > 1if ax — 0 as k — oo and

) 1 ) 1/p
Z(EZ|AG,|I’) < 0.
= \F ik |

Theorem C [3]. Let {a,} € Fp, 1 < p < 2. Then the cosine series
(C) is the Fourier series of its sumf and 15 = fll = o(1), » = oo iff
aylogn = o(1), n — oo.

In [4] L. Leindler proved the following very important result.

Theorem D [4] For any p > 1 the classes S, and F, ate identical.

2. Lemmas

For the proofs of our results, we need the following Lemmas.

Lemma 1 [2]. For each non-negative integer n, there holds
|| f(n)En(f) + f(=n)E_n(t)|| = 0(1), n — oo if and only if f(n)log|n|=
o(l) - 00.

The folloowing lemma, was proved by Boas in [1], but now we shall
give a new elegant proof different from that of Boas.

Lemma 2 [1]. If {A,} is a §-quasi-monotone sequence with
[ o]

o0

En”’"&n < 00, a > 0, then the convergence of zn"An < oo implies
n=1 n=1

that n'**4, = o(1), n — 0.
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Proof. By inequalities

2n-1  2n-1
1ot 4,, < n® [(An + Z 5k) + (An+1 + Z 5k) +

k=n © k=n4l

2n-1 2n-1
+(A2n 1+62n 1)]<n ZA1+Z7'6>

n

we obtain Lo

0o o0
(2")0+1A2n < 9o+l Z iaAg + 2a+1 Z ia+16,‘ —

i=n. i=n

=0(1)+o(1)=0o(1), n— oo,

\ 1 \o+l
(20 + 1) Agng < (20)" (14 2)7 (Adn + 620) <
3\ o+l

(5) ' [(2n)a+1‘42n + (2")a+152n] =o(1), n—oo.

Hence n®*t14, = o(1), n — co.

Lemma 3 [1]. Let {A, } isaéb- quasz-monotone sequence with

Zn“‘"‘é <oo,a>0.If Zn"‘A < oo then ZnH“lAA | < 00.

n=1 n=1 n=1

o0
Lemma 4 [3]. A sequence {a,} € Fp, p> 1 iﬁ‘ZZ’As(”) < 00 where

s=1

1/p
23
1 B
AslP) = {25_1 E |Aak|”} .

k=2-141

Lemma 5 If {c,} € S"‘a(é), 1< p<2 a0, then following relation
holds,

k
Z Ac] D;(1)

dt = 0,(k°+Y),

where O, depends only on p.
Proof. We have
.
> Dit

j=1 74

J
0

7I'Ik g .
dt= [ + [ =L+ J;.
0 n/k
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Applying the Holder-Hausdorff- Young technique as in the proof of the the-
orems of [6] and [7], we have:

k

1 _1_
Ly [aal ) ©_ e (L IAcJI (gt
Ikng(EZ ) = Mk MIZ = O(k*t),

i=1

where M > 0 and

1 k
7r P
< (p-1)/p J
N e i P 7

k
=D k01+1 1 |Ac.7| =0 ka+1
J:

where D, > 0.Thus

S

dt = O(k**1) + 0,(k*t1) = 0, (k*t1).

™ kA
({JZ::TDU)

Lemma 6 If {c,} € 5;,(6), 1 <p<2, a>0, then

Anf
0

dt =0(1), n— o0

5 Adp, i)

11]

Proof. Applying firstly Lemma 5, then Lemma 2, we obtain:

x| Ac:
An [ 130 =E Dj(1)] dt = 0p(n"+1 4) = 0(1), n— 0.
0 5= J
i=1

3. Main results

We shall prove the following results.

Theorem 1. Let {c,} € §;,(6), 1L <p< 2. Then,
(i) fort #£0, hm Snle,t) = f(t) exists. .
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(i) fe L} (T)

(iii) ||Sa(f) — fIl = o(1), n — oo is equivalent to f(n)log|n| = o(1),
n— .

Proof. Applying the same technique as in proof of the theorem of [6],
we have:

1
chk; < Zk|AA | ( Z 'ch'p> +nA, (%Z——'Aﬁ;'p)

1 |Ac;|P 1« |Ac|?
— 1+ .7 1+cx J ‘
Zk IAA l (k-pa+l Z ) An (npa+l Z AP

=1 j=1

n-1
= 0(1) (2 k‘l+a|AAk| + n°‘+1An) .

k=1

Hence {c,} is of bounded variation and for t # 0, nlim Sn(e,t) = f(2) exists.
Then,

: n—1 ) n
g‘n(c, t) = Z(A(c-n —ex)) (E=k(t) = 1) —con + Z AciDi(t).
k=1 k=0
From (i) it follows that for ¢ # 0,
f(#) = gnle,t) = Z AckDi(t) + Z Ale-k — ck)E_k(t).

k=n

From the last identity we have the estimate:

If = gnl)ll <

Z Aci Di(t)|dt + A Z |Ae—_i — cx)| log k,

k=n

where A is an absolute constant. Thus

If - n(0l| < B 2 AckDi(t)

k=n

dt+o(1), n— o0,
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where B is an absolute constant. Then applying the Abels’ transformation,
Lemma 5 and Lemma 6, we obtain:

) . o k
T . g Ac.
({ Z AckDy(t)|dt < Z |AAk|‘j)’ Z A—J Dj(t)| dt
k=n k=n j=1 9
=L Ac. o _.
+Anbf Z —ZJ-’— D;(t)|dt = O,(1) (Z |A ALk + n"“An) .
i=1 k=n

Then by Lemma 2 and Lemma 3, we get || f — ga(c)l| = o(1), n — oo.
Since g, is a polynomial, it follows that f € LY(T).
The proof (iii) follows from the estimate:

[1f = Sn(Hll = 1f(R)En + F(=m)E_all [< I = gn(o)l| = o(1), n— o0,

and from the Lemma 1.

Corollary 1 [7]. Let {an,} € Sp(8), 1 < p < 2. Then cosine series
(C) is the Fourier series of its sum f and ||Sn, — f|| = o(1), n — oo iff
aplogn =o(1), n — oc.

In [3], Fomin note that it is easy to see that the class F,, is wider when
p is closer to 1. But now we shall present the proof of this fact.

Theorem 2. For any 1 < r < p the following embedding relation
holds: F, C F,. ' ' '

1 1 1 1 1 '
Proof. By inequality ~ > =, we have — = — + —, where ¢ > 0. This
r . p r p. q

.. 1 1 .
equality imply that ;}—, + 217 = 1, where p' = i:_ and ¢’ = % Applying the

Holder’s inequality, we have:

gs+1 got+l gst1 : ;,lf g1 ;!"
Z |Aa|” = z lAai|” 1< ( 2 |Aak|rp') ( Z lql)

k=241 k=241 k=2%41" k=241

2l+1 ;’lr
=(2’)""’( ) IAakv’)

k=2°+1
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Then

4

2a+1 ;};
ZQsAs(r) < 223 9-3/r  9s/d'r ( E |Aaklp)

- s=1 k=2241

k=2041

0 “'1 -}—Jq- 2°+1 ’ o
()" (E ) g
s=1

Applying the Lemma 4, the proof of the theorem is completed.
Theorem 3. For any p > 1 the classes S, 85(6) and F, are zdentzcal.
Proof. The proof follows from Theorem B and Theorem D.

Remark. Concerning the embedding relation S, C Fo, L. Leindler [4]
verified the inequalities

o gm+1 % ‘o0 gm+l IA Ip %
DL S Ay <Y 2magm {2 B T“;‘— <o
m=1 n=2m41 m=1 n=2m41 n

Now we shall present a new proof of this embedding relatzon, different from
that of L. Leindler.

- Namelly, applying the Abel’s transformation, we have:

23

S olsap= > 4 et
k=2s=141 k=20-141
2°-1
Aa Aa ' Adg;|?
= Z A(AP)Z, ]I AP’Z, JI 2’_1+1 Z I JI
N k=20=141 j=1
2°—1 P
= Y kA4 Z IA“J' 24 | Z 'A“JI
k=2°—141 ]—1

! 98— 1
s~1 : |Aa IP
-2 A;"l'}-l (2.9— Z ] )

2°—1
=0 | Y kA(,aﬂ")Jrz*'A".+2’-1A;’,_1;L1
k=2s=141
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23
=0(1) [ 3 AL -2°4L +2°A% + 2771 AR H]
k=22=141 -

=0(2°714%,_,).

Applying the Cauchy condensation test, we obtain

o0 0 1 /‘ P
Y 2°AP < 0(1) o2 (5?3 2“1A§,_1)
s=1

s=1
=0 (Z 25—1A23—1) < 0.

s=1

Finally, by Lemma 4, we obtain {a;} € F.
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HEKOM KJIACH HA ['-KOHBEPI'EHIINJA
HA ®YPUEOB PEl

TomoBcku Kubopan

Peszume

Bo 1pynor ce pasrmemysa mpobiaemor ma Ll-koHBepremmmja mHa
TPUTOHOMETPUCKM PeX, T.e. AaJleHO e IPONpYBamkbe Ha TeopeMaTa Ha
4. B. Cranojesuk n B. B. Cranojesut [5], a ucto Taka u Ha TEeopeMaTa
Ol aBTOPOT NoKaxaHa Bo [7]. MMeHO, nalenu ce moTpeGHU U HOBOJIHK
ycnou 3a L'-komsepremnuja ma ®ypueos pen co 6-KBa3MMOHOTOHU
kKowepunuerTu. Ilotoa e yrBpmeHO neka Tpure Kiacu ®ypmeoB: Koe-
bunenty, nepunupanu ox Pomun; Y. B. Cramojesuk, B. B. Cragmo-
jeBUK [5] M aBTOPOT 0 OBOj TPYX Ce MACHTUYHH.
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