Математички Билтен 24 (L) 2000 (37-46) Скопје, Македонија

SOME CLASSES OF L^1 – CONVERGENCE OF FOURIER SERIES

Živorad Tomovski

Abstract

We study here L^1 -convergence of a trigonometric series, i.e. the extension is made for the Č. V. Stanojevic and V. B. Stanojevic theorem [5] and also for the theorem proved by the author in [7]. Namely, the new necessary-sufficient conditions for L^1 -convergence of Fourier series with δ -quasi-monotone coefficients are obtained.

Then it is verified that the three classes of Fourier coefficients defined by Fomin; Č. V. Stanojevic, V. B. Stanojevic and the author of the present note, are identical.

1. Introduction

It is well known that if a trigonometric series converges in L^1 to a function $f \in L^1$ then it is the Fourier series of the function f. Let $\{c_k: k = 0, \pm 1, \pm 2, \ldots\}$ be a sequence of complex numbers, and the partial sums of the complex trigonometric series

$$\sum_{|n| \le \infty} c_n e^{int} \tag{1.1}$$

be denoted by $S_n(c,t) = \sum_{k=-n}^n c_k e^{ikt}$, $t \in T$, where T is the unit circle.

Mathematics subject classification (2000): 26D15, 42A20.

If the trigonometric series is the Fourier series of some $f \in L^1$, we shall write $c_n = \hat{f}(n)$, for all n and $S_n(c,t) = S_n(f,t) = S_n(f)$. Let $E_n(t) = \sum_{i=0}^n e^{ikt}$.

The complex form of the above modified trigonometric sums is

$$g_n(c,t) = S_n(c,t) - (c_n E_n(t) + c_{-n} E_{-n}(t)).$$

We assume that $\{c_n\}$ is a null sequence i.e.

$$\lim_{|n| \to \infty} c_n = 0. \tag{1.2}$$

A complex null sequence $\{c_n\}$ satisfying

$$\sum_{n=1}^{\infty} |\Delta(c_n - c_{-n})| \log n < \infty \tag{1.3}$$

is called weakly even. It is obvious that if $\{c_n\}$ is an even sequence then it is weakly even. Č. V. Stanojevic and V. B. Stanojevic introduced a class S_p^* defined as follows: Aweakly even null sequence $\{c_n\}$ of complex numbers belongs to the class S_p^* if for some 1 and some monotone sequence

$$\{A_n\}$$
 such that $\sum_{n=1}^{\infty} A_n < \infty$ the condition $\frac{1}{n} \sum_{k=1}^{n} \frac{|\Delta c_k|^p}{A_k^p} = O(1)$ holds.

They [5] proved the following theorem:

Theorem A. Let $\{c_n\} \in S_p^*$, 1 . Then

- (i) for $t \neq 0$, $\lim_{n \to \infty} S_n(C, t) = f(t)$ exists.
- (ii) $f \in L^1(T)$
- (iii) $||S_n(f) f|| = o(1)$, $n \to \infty$ is equivalent to $\hat{f}(n) \log |n| = o(1)$, $n \to \infty$.

On the other hand, a sequence $\{A_k\}$ is said to be δ -quasi-monotone if $A_k \to 0$, $A_k > 0$ ultimately and $\Delta A_k \ge -\delta_k$, where $\{\delta_k\}$ is a sequence of positive numbers.

We introduce here a new class $S_{p_{\alpha}}^{*}(\delta)$, $1 , <math>\alpha \geq 0$ of sequence as follows. A weakly even sequence $\{c_k\}$ of complex numbers satisfies conditions $S_{p\alpha}^{*}(\delta)$, or $c_k \in S_{p\alpha}^{*}(\delta)$ if $c_k \to 0$ as $k \to \infty$, and there exists a sequence of numbers $\{A_k\}$ such that:

a)
$$\{A_k\}$$
 is δ -quasi-monotone and $\sum_{k=1}^{\infty} k^{1+\alpha} \delta_k < \infty$

b)
$$\sum_{k=1}^{\infty} k^{\alpha} A_k < \infty$$
 c) $\frac{1}{n^{p\alpha+1}} \sum_{k=1}^{n} \frac{|\Delta c_k|^p}{A_k^p} = O(1)$.

Let $\{c_n\}$ is an even and real sequence $(c_{-k} = c_k = a_k)$, for all k. Then series (1.1) is a cosine series:

$$\sum_{k=-\infty}^{\infty} c_k e^{ikx} = 2\left(\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx\right). \tag{C}$$

In this case, we denote $S_p^* = S_p$. But in [6], we defined a new integrability class $S_p(\delta)$, p > 1 (case $\alpha = 0$). Later the author of the present note proved the following theorem.

Theorem B [8] For any p > 1, the classes S_p and $S_p(\delta)$ are identical. Fomin [3] have defined a class \mathcal{F}_p , p > 1 of Fourier coefficients as follows: a sequence $\{a_k\}$ belongs to \mathcal{F}_p , p > 1 if $a_k \to 0$ as $k \to \infty$ and

$$\sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=k}^{\infty} |\Delta a_i|^p \right)^{1/p} < \infty.$$

Theorem C [3]. Let $\{a_n\} \in \mathcal{F}_p$, $1 . Then the cosine series (C) is the Fourier series of its sumf and <math>||S_n - f|| = o(1)$, $n \to \infty$ iff $a_n \log n = o(1)$, $n \to \infty$.

In [4] L. Leindler proved the following very important result.

Theorem D [4] For any p > 1 the classes S_p and F_p are identical.

2. Lemmas

For the proofs of our results, we need the following Lemmas.

Lemma 1 [2]. For each non-negative integer n, there holds $||\hat{f}(n)E_n(t)+\hat{f}(-n)E_{-n}(t)||=o(1), n\to\infty$ if and only if $|\hat{f}(n)|\log |n|=o(1)\to\infty$.

The folloowing lemma, was proved by Boas in [1], but now we shall give a new elegant proof different from that of Boas.

Lemma 2 [1]. If $\{A_n\}$ is a δ -quasi-monotone sequence with $\sum_{n=1}^{\infty} n^{1+\alpha} \delta_n < \infty, \ \alpha \geq 0, \text{ then the convergence of } \sum_{n=1}^{\infty} n^{\alpha} A_n < \infty \text{ implies that } n^{1+\alpha} A_n = o(1), \ n \to \infty.$

Proof. By inequalities

$$n^{\alpha+1}A_{2n} \leq n^{\alpha} \left[\left(A_n + \sum_{k=n}^{2n-1} \delta_k \right) + \left(A_{n+1} + \sum_{k=n+1}^{2n-1} \delta_k \right) + \cdots + \left(A_{2n-1} + \delta_{2n-1} \right) \right] \leq n^{\alpha} \left(\sum_{i=n}^{2n-1} A_i + \sum_{i=n}^{2n-1} i \delta_i \right)$$

we obtain

$$(2n)^{\alpha+1}A_{2n} \leq 2^{\alpha+1} \sum_{i=n}^{\infty} i^{\alpha}A_i + 2^{\alpha+1} \sum_{i=n}^{\infty} i^{\alpha+1}\delta_i =$$

$$= o(1) + o(1) = o(1), \quad n \to \infty,$$

$$(2n+1)^{\alpha+1}A_{2n+1} \leq (2n)^{\alpha+1} \left(1 + \frac{1}{2n}\right)^{\alpha+1} (A_{2n} + \delta_{2n}) \leq$$

$$\left(\frac{3}{2}\right)^{\alpha+1} \left[(2n)^{\alpha+1}A_{2n} + (2n)^{\alpha+1}\delta_{2n} \right] = o(1), \quad n \to \infty.$$

Hence $n^{\alpha+1}A_n = o(1), n \to \infty$.

Lemma 3 [1]. Let $\{A_n\}$ is a δ -quasi-monotone sequence with $\sum_{n=1}^{\infty} n^{1+\alpha} \delta_n < \infty, \ \alpha \geq 0. \ \text{If} \ \sum_{n=1}^{\infty} n^{\alpha} A_n < \infty \quad \text{then} \ \sum_{n=1}^{\infty} n^{1+\alpha} |\Delta A_n| < \infty.$

Lemma 4 [3]. A sequence $\{a_n\} \in \mathcal{F}_p$, p > 1 iff $\sum_{n=1}^{\infty} 2^s \Delta s^{(p)} < \infty$ where

$$\Delta s^{(p)} = \left\{ \frac{1}{2^{s-1}} \sum_{k=2^{s-1}+1}^{2^s} |\Delta a_k|^p \right\}^{1/p}.$$

Lemma 5 If $\{c_n\} \in S_{p\alpha}^*(\delta)$, $1 , <math>\alpha \ge 0$, then following relation holds,

$$\int_{0}^{\pi} \left| \sum_{j=1}^{k} \frac{\Delta c_j}{A_j} D_j(t) \right| dt = O_p(k^{\alpha+1}),$$

where O_p depends only on p.

Proof. We have

$$\int_{0}^{\pi} \left| \sum_{j=1}^{k} \frac{\Delta c_{j}}{A_{j}} D_{j}(t) \right| dt = \int_{0}^{\pi/k} + \int_{\pi/k}^{\pi} = I_{k} + J_{k}.$$

Applying the Holder-Hausdorff-Young technique as in the proof of the theorems of [6] and [7], we have:

$$I_k \leq Mk \left(\frac{1}{k} \sum_{j=1}^k \frac{|\Delta c_k|^p}{A_k^p} \right)^{\frac{1}{p}} = Mk^{\alpha+1} \left(\frac{1}{k^{p\alpha+1}} \sum_{j=1}^k \frac{|\Delta c_j|^p}{A_j^p} \right)^{\frac{1}{p}} = O(k^{\alpha+1}),$$

where M > 0 and

$$\begin{split} J_k & \leq \left(\frac{\pi}{p-1}\right)^{\frac{1}{p}} k^{(p-1)/p} \left(\sum_{j=1}^k \frac{|\Delta c_j|^p}{A_j^p}\right)^{\frac{1}{p}} \\ & = D_p k^{\alpha+1} \left(\frac{1}{k^{p\alpha+1}} \sum_{j=1}^k \frac{|\Delta c_j|^p}{A_j^p}\right)^{\frac{1}{p}} = O_p(k^{\alpha+1}) \,, \end{split}$$

where $D_p > 0$. Thus

$$\int_{0}^{\pi} \left| \sum_{j=1}^{k} \frac{\Delta c_{j}}{A_{j}} D_{j}(t) \right| dt = O(k^{\alpha+1}) + O_{p}(k^{\alpha+1}) = O_{p}(k^{\alpha+1}).$$

Lemma 6 If $\{c_n\} \in S_{v\alpha}^*(\delta)$, $1 , <math>\alpha \ge 0$, then

$$A_n \int_0^\pi \left| \sum_{j=1}^n rac{\Delta c_j}{A_j} D_j(t) \right| dt = o(1), \quad n o \infty$$

Proof. Applying firstly Lemma 5, then Lemma 2, we obtain:

$$A_n \int_0^{\pi} \left| \sum_{j=1}^n \frac{\Delta c_j}{A_j} D_j(t) \right| dt = O_p(n^{\alpha+1} A_n) = o(1), \quad n \to \infty.$$

3. Main results

We shall prove the following results.

Theorem 1. Let $\{c_n\} \in S_{p\alpha}^*(\delta)$, $1 . Then, (i) for <math>t \ne 0$, $\lim_{n \to \infty} S_n(c,t) = f(t)$ exists.

(ii) $f \in L^1(T)$

(iii)
$$||S_n(f) - f|| = o(1)$$
, $n \to \infty$ is equivalent to $\hat{f}(n) \log |n| = o(1)$, $n \to \infty$.

Proof. Applying the same technique as in proof of the theorem of [6], we have:

$$\begin{split} &\sum_{k=1}^{n} |\Delta c_k| \leq \sum_{k=1}^{n-1} k |\Delta A_k| \left(\frac{1}{k} \sum_{j=1}^{k} \frac{|\Delta c_j|^p}{A_j^p}\right)^{\frac{1}{p}} + n A_n \left(\frac{1}{n} \sum_{j=1}^{n} \frac{|\Delta c_j|^p}{A_j^p}\right)^{\frac{1}{p}} \\ &= \sum_{k=1}^{n-1} k^{1+\alpha} |\Delta A_k| \left(\frac{1}{k^{p\alpha+1}} \sum_{j=1}^{k} \frac{|\Delta c_j|^p}{A_j^p}\right)^{\frac{1}{p}} + n^{1+\alpha} A_n \left(\frac{1}{n^{p\alpha+1}} \sum_{j=1}^{n} \frac{|\Delta c_j|^p}{A_j^p}\right)^{\frac{1}{p}} \\ &= O(1) \left(\sum_{k=1}^{n-1} k^{1+\alpha} |\Delta A_k| + n^{\alpha+1} A_n\right). \end{split}$$

Hence $\{c_n\}$ is of bounded variation and for $t \neq 0$, $\lim_{n \to \infty} S_n(c,t) = f(t)$ exists. Then,

$$g_n(c,t) = \sum_{k=1}^{n-1} (\Delta(c_{-n} - c_k)) (E_{-k}(t) - 1) - c_{-n} + \sum_{k=0}^n \Delta c_k D_k(t).$$

From (i) it follows that for $t \neq 0$,

$$f(t) - g_n(c,t) = \sum_{k=n}^{\infty} \Delta c_k D_k(t) + \sum_{k=n}^{\infty} \Delta (c_{-k} - c_k) E_{-k}(t).$$

From the last identity we have the estimate:

$$||f - g_n(c)|| \leq \int_T \left| \sum_{k=n}^{\infty} \Delta c_k D_k(t) \right| dt + A \sum_{k=n}^{\infty} |\Delta(c_{-k} - c_k)| \log k,$$

where A is an absolute constant. Thus

$$||f-g_n(c)|| \leq B \int_0^{\pi} \left| \sum_{k=n}^{\infty} \Delta c_k D_k(t) \right| dt + o(1), \quad n \to \infty,$$

where B is an absolute constant. Then applying the Abels' transformation, Lemma 5 and Lemma 6, we obtain:

$$\int_{0}^{\pi} \left| \sum_{k=n}^{\infty} \Delta c_{k} D_{k}(t) \right| dt \leq \sum_{k=n}^{\infty} \left| \Delta A_{k} \right| \int_{0}^{\pi} \left| \sum_{j=1}^{k} \frac{\Delta c_{j}}{A_{j}} D_{j}(t) \right| dt$$

$$+ A_{n} \int_{0}^{\pi} \left| \sum_{j=1}^{n-1} \frac{\Delta c_{j}}{A_{j}} D_{j}(t) \right| dt = O_{p}(1) \left(\sum_{k=n}^{\infty} \left| \Delta A_{k} \right| k^{\alpha+1} + n^{\alpha+1} A_{n} \right).$$

Then by Lemma 2 and Lemma 3, we get $||f - g_n(c)|| = o(1)$, $n \to \infty$. Since g_n is a polynomial, it follows that $f \in L^1(T)$.

The proof (iii) follows from the estimate:

$$\left| \|f - S_n(f)\| - \|\hat{f}(n)E_n + \hat{f}(-n)E_{-n}\| \right| \le \|f - g_n(c)\| = o(1), \quad n \to \infty,$$

and from the Lemma 1.

Corollary 1 [7]. Let $\{a_n\} \in S_p(\delta)$, 1 . Then cosine series (C) is the Fourier series of its sum <math>f and $||S_n - f|| = o(1)$, $n \to \infty$ iff $a_n \log n = o(1)$, $n \to \infty$.

In [3], Fomin note that it is easy to see that the class \mathcal{F}_p is wider when p is closer to 1. But now we shall present the proof of this fact.

Theorem 2. For any 1 < r < p the following embedding relation holds: $\mathcal{F}_p \subset \mathcal{F}_r$.

Proof. By inequality $\frac{1}{r} > \frac{1}{p}$, we have $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$, where q > 0. This equality imply that $\frac{1}{p'} + \frac{1}{q'} = 1$, where $p' = \frac{p}{r}$ and $q' = \frac{q}{r}$. Applying the Hölder's inequality, we have:

$$\sum_{k=2^{s+1}}^{2^{s+1}} |\Delta a_k|^r = \sum_{k=2^{s+1}}^{2^{s+1}} |\Delta a_k|^r \cdot 1 \le \left(\sum_{k=2^{s+1}}^{2^{s+1}} |\Delta a_k|^{rp'}\right)^{\frac{1}{p'}} \left(\sum_{k=2^{s+1}}^{2^{s+1}} 1^{q'}\right)^{\frac{1}{q'}}$$

$$= (2^s)^{1/q'} \left(\sum_{k=2^{s+1}}^{2^{s+1}} |\Delta a_k|^p\right)^{\frac{1}{p'}}$$

Then

$$\sum_{s=1}^{\infty} 2^{s} \Delta s^{(r)} \leq \sum_{s=1}^{\infty} 2^{s} \cdot 2^{-s/r} \cdot 2^{s/q'r} \left(\sum_{k=2^{s}+1}^{2^{s+1}} |\Delta a_{k}|^{p} \right)^{\frac{1}{p'r}}$$

$$= \sum_{s=1}^{\infty} 2^{s} \left(\frac{1}{2^{s}} \right)^{\frac{1}{r} - \frac{1}{q}} \left(\sum_{k=2^{s}+1}^{2^{s+1}} |\Delta a_{k}|^{p} \right)^{\frac{1}{p}} = \sum_{s=1}^{\infty} 2^{s} \Delta_{s}^{(p)}.$$

Applying the Lemma 4, the proof of the theorem is completed.

Theorem 3. For any p > 1 the classes S_p , $S_p(\delta)$ and \mathcal{F}_p are identical.

Proof. The proof follows from Theorem B and Theorem D.

Remark. Concerning the embedding relation $S_p \subseteq \mathcal{F}_p$, L. Leindler [4] verified the inequalities

$$\sum_{m=1}^{\infty} 2^{m(1-\frac{1}{p})} \left\{ \sum_{n=2^m+1}^{2^{m+1}} |\Delta a_n|^p \right\}^{\frac{1}{p}} \leq \sum_{m=1}^{\infty} 2^m A_{2^m} \left\{ 2^{-m} \sum_{n=2^m+1}^{2^{m+1}} \frac{|\Delta a_n|^p}{A_n^p} \right\}^{\frac{1}{p}} < \infty$$

Now we shall present a new proof of this embedding relation, different from that of L. Leindler.

Namelly, applying the Abel's transformation, we have:

$$\begin{split} &\sum_{k=2^{s-1}+1}^{2^{s}} |\Delta a_{k}|^{p} = \sum_{k=2^{s-1}+1}^{2^{s}} A_{k}^{p} \frac{|\Delta a_{k}|^{p}}{A_{k}^{p}} \\ &= \sum_{k=2^{s-1}+1}^{2^{s}-1} \Delta (A_{k}^{p}) \sum_{j=1}^{k} \frac{|\Delta a_{j}|^{p}}{A_{j}^{p}} + A_{2^{s}}^{p} \sum_{j=1}^{2^{s}} \frac{|\Delta a_{j}|^{p}}{A_{j}^{p}} - A_{2^{s-1}+1}^{p} \sum_{j=1}^{2^{s-1}} \frac{|\Delta a_{j}|^{p}}{A_{j}^{p}} \\ &= \sum_{k=2^{s-1}+1}^{2^{s}-1} k \Delta (A_{k}^{p}) \left(\frac{1}{k} \sum_{j=1}^{k} \frac{|\Delta a_{j}|^{p}}{A_{j}^{p}} \right) + 2^{s} A_{2^{s}}^{p} \left(\frac{1}{2^{s}} \sum_{j=1}^{2^{s}} \frac{|\Delta a_{j}|^{p}}{A_{j}^{p}} \right) \\ &- 2^{s-1} A_{2^{s-1}+1}^{p} \left(\frac{1}{2^{s-1}} \sum_{j=1}^{2^{s-1}} \frac{|\Delta a_{j}|^{p}}{A_{j}^{p}} \right) \\ &= O(1) \left[\sum_{k=2^{s-1}+1}^{2^{s}-1} k \Delta (A_{k}^{p}) + 2^{s} A_{2^{s}}^{p} + 2^{s-1} A_{2^{s-1}+1}^{p} \right] \end{split}$$

$$=O(1)\left[\sum_{k=2^{s-1}+1}^{2^{s}} A_{k}^{p} - 2^{s} A_{2^{s}}^{p} + 2^{s} A_{2^{s}}^{p} + 2^{s-1} A_{2^{s-1}+1}^{p}\right]$$
$$=O(2^{s-1} A_{2^{s-1}}^{p}).$$

Applying the Cauchy condensation test, we obtain

$$\sum_{s=1}^{\infty} 2^s \Delta_s^{(p)} \le O(1) \sum_{s=1}^{\infty} 2^s \left(\frac{1}{2^{s-1}} 2^{s-1} A_{2^{s-1}}^p \right)^{\frac{1}{p}}$$

$$= O\left(\sum_{s=1}^{\infty} 2^{s-1} A_{2^{s-1}} \right) < \infty.$$

Finally, by Lemma 4, we obtain $\{a_k\} \in \mathcal{F}_p$.

References

- [1] R. P. Boas: Quasi-positive sequence and trigonometric series, Proc. London Math. Soc. 14A (1965), 38-48.
- [2] W. O. Bray and Č. V. Stanojevic: L¹-convergence classes of Fourier series, Transs. Amer. Math. Soc. 275 (1983), 59-69.
- [3] G. A. Fomin: A class of trigonometric series, Mat. Zametki, 23 (1978), 117-124. (Russian)
- [4] L. Leindler: On the equivalence of classes of Fourier coefficients, Math. Inequalities & Applications, 3 (1) (2000), 45-50.
- [5] Č. V. Stanojevic and V. B. Stanojević: Generalizations of the Sidon-Telyakovskii theorem, Proc. Amer. Math. Soc. 101 (1987), 679-684.
- [6] Ž. Tomovski, An application of the Hausdorff-Young inequality, Math. Inequalities & Appl., 1 (4) (1998), 527-532.
- [7] Ž. Tomovski, Necessary and sufficient condition for L^1 convergence of cosine trigonometric series with δ -quasi monotone coefficients, Mathematical Communications, (4) N.2 (1999), 219-224.
- [8] Ž. Tomovski, Remarks on some classes of Fourier coefficients, Analysis Mathematica, (Szeged-Moscow), (accepted).

НЕКОИ КЛАСИ НА L^1 -КОНВЕРГЕНЦИЈА НА ФУРИЕОВ РЕД

Томовски Живорад

Резиме

Во трудот се разгледува проблемот на L^1 -конвергенција на тригонометриски ред, т.е. дадено е проширување на теоремата на Ч. В. Станојевиќ и В. Б. Станојевиќ [5], а исто така и на теоремата од авторот докажана во [7]. Имено, дадени се потребни и доволни услови за L^1 -конвергенција на Фуриеов ред со δ -квазимонотони коиефициенти. Потоа е утврдено дека трите класи Фуриеови коефициенти, дефинирани од Фомин; Ч. В. Станојевиќ, В. Б. Станојевиќ [5] и авторот од овој труд се идентични.

Faculty of Mathematical and Natural Sciences
P. BOX 162
1000 Skopje
MACEDONIA

e-mail: tomovski@iunona.pmf.ukim.edu.mk