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DIFFERENTIATION OF FUNCTIONS
ON VILENKIN GROUPS*
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Abstract

In this paper we will consider a concept of differentiation of
complex functions defined on Vilenkin groups, looking from the
aspect of summability of Vilenkin series. In that sense we give
matrix interpretation of C. N. Onneweer’s concept of differentiation
[5, Definiticn 3], and then our generalization of that concept. We
also give main properties of this generalized derivative. Moreover,
we show that every method of summation of Vilenkin series, in a
certain way, defines some concept of differentiation of integrable
functions on Vilenkin groups.

1. Introduction and preliminaries

Vilenkin group G is an infinite compact totally disconnected Abelian
group whose topology satisfies the second axiom of countability. Vilenkin
[8] has proved that topology in G can be given by a basic chain of neigh-
borhoods of zero

G=GoD>G1 DGy D DGy D -2{0c}, [) Gn={0c}, (1.1)
n€No
consisting of open subgroups of a group G, such that the factor group
Gp/Gny1 is a cyclic group of a prime order pp41, for every n € Ny. We
shall call a group G bounded iff a sequence (p, ) is bounded. There exists
the normalized Haar measure g on G, such that

w(Gn) = m;1(Vn € Ny), where mpu:=pi-ps-...-pn (mo:=1). (1.2)
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Every non-negative integer n has a unique representation
Z armg, N(n), where eacha; (1=0,1,2,...,N) (1.3)
k=1

is an integer that satisfies the condition 0 < a; < piy1 — 1, ay # 0.
For n € Ny, let us choose a g, € G, \ Gny1. As p, (n = 1,2,...) are
primes, everi ¢ € G can be represented in a unique way as

o0

g= Z angn, for some integers a, € {0,1,2,...,pn+1 —-1}. (1.4)
n=0 . ‘

Then for every n € N o holds

(?0 .
Gﬁ:{géG:g:Zaigiv, a; =0, OSiSn—l}. (1.5)
1=0
For every 1 < p < oo let L?(G) denote the L? space on G with respect to
the measure g. The set of continuous functions defined on G with values
in' C (the set of complex numbers) will be denoted by C(G).

Remark 1.1. If 1 < p; < py < o0, then LP*(@) C LP*(G). Let T
denote the group of characters of the group G, and let G+ be the annihilator
of the group G, in I'. Vilenkin has proved [8] that there exists Paley-type
ordering of elements in I''. " -
let us choose a x € G¢; w1\ Gy and denote it by Yy, ; then assign to every
n, represented by (1.3), the character x, defined by

. e

| Cxn= X% (1.6)

We easily see that _ k=0 ' .
GL={x;:0<j<m,} (¥ne Ny). (1.7)

' (X")nENo supplied with the above ordering is called a Vilenkin system.
This system is bounded iff the group G is bounded. Dual group I' of the
group G is a discrete, countable Abelian group with torsion ([4]. (24.15)
and (24.26)).

Vilenkin series E ¢nXn 18 a Fourier series iff there exists a function

n=0-

f € LY(G) such that »
en=f)p=11% (meNo), (18

where Z denotes the coniplex-conjugate of z. In that case,'the n-th partial
sum of the series is given by
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n-1
Sa(f) = f(k)xx = f* D, (1.9)
k=0
n-1

where D,,: = E X is the Dirihlet kernel of index n on G, and

T Teete) = ]S = ety

is the convolution of functions f and ¢ on G.
Chronologically, firstly J. E. Gibs ([2] and [3]), introduced the DYADIC
DERIVATIVE ”[1]” with the following property:

fos(@) = kw(z),
where wi(z) is the Walsh (J. L. Walsh) function of index k.
This derivative was furtner studied by P. L. Butzer and H. J. Wagner
[1], and also F. Schipp [7] who proved that kay | 0 yields

00 1 .
(}_—: akwk(x)) = Z kaywi(z).
k=0 k=0

V. A. Skvortsov and W. R. Wade have proved the analogue result
for the series over arbitrary system of characters od 0-dimensional groups
under more general assumptions and have simplified the proof.

J. Pal and P. Simon [6] have defined a derivative of a function de-
fined on an arbitrary 0-dimensional compact commutative group. C. W.
Onnewer [5] has studied differentiation of functions (with complex values)
defined on a dyadic group D. In [5] he has given three definitions of dyadic
differentiation where Leibniz differentiation formula does not hold. His
main idea was that the derivative on a dyadic group should be defined in
such a way that relations between a function defined on D (mainly relations
between characters on D) and its derivative be as simple and natural as
possible.

For example, the natural relation between the character

e'** = cos(kz) + isin(kz)

on the torus group T = R/27nZ and its derivative (e'**)" = ike** should
be in some way preserved for a dyadic derivative of a character on D,
In our paper we will start with the following facts from [5]:

Defonition 1.A. ([5, Definition 3], applied to Vilenkin groups).
For a Vilenkin group G, function f € L}(G) and n € N let us define

n-—1
Enf(z):= 3 (mip1 = mi)[f(2) = S, f(2)], (1.10)

i=-—1
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where m_y: =0 and
. omy~—1

Sm,f(-r) = m *f Z f(s)\s(a:)

(the partial sum of an index m; of the Fourier series Z EYxx(z) of a
k=0
function f). :
If lim E, f(z) exists, than its value is caled derivation of a function
- m—00
f at & € G, and denoted by fll(2).

Theorem 1.A. [5, Theorem 3].
a) If x €T and z € G, then x1(2) ezists, and ! (z) = ||x||- x(z), where

me, i x€Gy\Giy, forsome keN
lIxll: = { ' | (1.11)

0, o X;: Xo-."
b) if fe LY(G)andn e N, the’ﬁ
IxIIf(x), if x€Gx

. Enf A(, ) = o " 1.12
(Enf)"(x. {mn~f(x), i ovd ot (1.12)

Theorem 1.B. [5, Theorem 4]. If f € W(LY(G), ||x||) then f € D,
where D is a domain of the differentiation operator deﬁned in Deﬁmtzon
1.A. and

W (L&), HXH);—{fEL (G): (3g € L}(G)) such t»hat” w13

. a0 = IMIf(x), xe T}
If we define
Lef(2) = Lu(fy2):= Smo f@) = 3 Foxolz)  (114)
s=0

for every k € hp:= {mu,mp+1,...,mpy; — 1} (n € Ny), then we can
write

- n—1 |
Enf(x) EEn(.ﬂT) = Z(mi-f-l - [ (IL) - m f’ )] h
i=~1
n—1 Mi41—1

=) > f(w)—ka, z)] (vneN),

i==1 k=m;
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* Relation (1.13) has a following matrix interpretation:

Mmp=1 Mmpy1—1

! 1
_ . - - -
. g =1
My — 111---10--:00--- f(‘mn)Xm‘,.U. Zl.f(s)xe
111-.-.-10---00--- o =0
. me~1
‘ oo o =1 D e
1171---10-+--00---1" )
a=0
- my -1 0
M1 — 111.“11”.1,0'” f(mn+1)Xm,.+1 +1 K
| > 1 Heoxa
=0
R | L * 4 L : i

In that way we have obtained matrix
A =[Ai;)(4,5 € N¢), where
\ 1, for mp<i<mp A0Lj<my, n€ Ny (1.16)
v 0, otherwise.

So, we can write

Lof(z) = La(f,2) =

= (1.17)
D Akf(k)xx(z),V € N,Vz € G, (Lo(f,2):=0,Yz € G) .
k=0

This matrix motivates us to introduce the following definition.

Definition 1.1. Let G be a given Vilenkin group, and let A = [A,«]
(n,k € Np) be a scalar matrix. For f € L}(G) let

Li(f,A,z): ‘Z)\ksf(s)xs(:v), (k € Np) and

N—=1 mg41-—1

EN(f,A,J;);:Z Z o(f,Az) = Li(f,A,2)] (YN € N)

k=—1 i=my

(with the condition that Li(f,A,z) — o(f,A,z), K — o0). Then the limit
Nlim Ex(f,A,z) (if it exists) is called the A-derivative of the function f at

z € G and denoted by fA(z).
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If lim Ey(f,A,z) = f*(z) uniformly on A C G, then the function
N—00

fA is called uniform A-derivative of f on A. We will use the following
notation:

D(A,z) = {f € L'(G) : there exists f*(z)},
D(AA) = {fe LY(G): there exists fA(z), forae z€ AC G},
and

UD(AA)={fe LY (G): [ is uniformly A-differentiable on A C G}.

Remark 1.2.
a) If we take the matrix (1.16) in Definition 1.1, then for every i € hy
~ and every k € Ng we have

my -1

Li(f,A2) = Ly (fsA2) = ) 1+ f(8)x5(2) = Sy f(2) -

s=0

This implies that L;(f,A,z) — f(z) = o(f,A,z) a.e. on G.

N-1
In this case Ey(f,A,z) = Z (mpg1 — mk)[ f(z) - Smkf(x)], S0 we
k=1
have fA(z) = hm EN(f,A z) = fll(z) and this is exactly Onneweer’s

concept of diferentlatlon Let us notice that for every function f € LP(G)
(1<p< o) -
15ma = fllp = 0 (n — 00).

b) If we take a triangular matrix [Ank] (Ank = 0, k& > n) in Deﬁmtlon 1.1
then :

La(f,A,2) = Z Ankﬂk)m(:;.) (n € No)..
k=0

¢) From definition 1.1 we can see that every matrix A = [Ax] (n,k €

Nyp) that sums the series Zf(s)xs(:v) towards o(f,A,z) defines a
s=0 v
A-derivative of a function f € L(G) at the point z.

2. Results

Main results of this paper are the following statements about main
properties of A-derivative of integrable functions on a Vilekin group G.
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Theorem 2.1. Let G, A, f, L,(f,A,z) and Ex(f,A,z) be as in Defi-
nition 1.1. Then the following statements hold: -
(l) LK(X]',A,:D) = Aijj(.'t) (Vk € No, V] € No, ij € I‘, Vz € G)
(ii) En(xj,A,2) = x;(2)Ax(j) (Yn€ N, Vj€ Ny, Vz € G), where
N—=1 me43-1
An(j):= kzl Z (Aooj = Aij)y  Acoji= klggo Akj -
=—1 i=m,
(iii) For arbitrary j € Ngo Xx; is a A-differentiable function at every z €
G iff the limit lim Ay(j):= Aw(j) ezists. In that case, x}(z) =

xj(z)Aoo(j) holds.
(iv) [Le(f,A,2)]"(5) = Le(§) = Me; f(5) (V5 € No), under the condition
that the series Li(f,A;z) € LY(G) is uniformly convergent on G.
(V) If LM(G) > L(f, A, z) — o(f, A, z) uniformly on G, then for N € N
. A, Fud . rr - .
and every j € No [Ex(f,A,2)]"(j) = Bn(j) = F(j)An(5) holds.
Remark 2.1.1. If in Theorem 2.1 we take Ao = 1(Vn € Np) then
the following holds:
(1.) Ay(0) =0 (VN € Nyp) and A(0) = NleOOAN(O) =0.
(2.) Li(x0,A,z) = xo(z) = 1 (Vk € No, Vz € G).
(3.) Ex(x0,A,2) =0 (VYN € Ny, Vz € G).
! N . A
(4.) [Lk(f,A,:z:)] (x0) = Lx(0) = f(0) (Vk € Ny) and
A 2 R
(5) [Ex(f,A,2)] "(x0) = En(0) = 0' (YN € N).
Theorem 2.2. Let G, f and A be as in Definition' 1.1. Following
statement hold:
(i) If Adko = 1 (Vk € Ng) and f(z) = C (Vz € G) (C-constant), then
A(z)=0 (Vz € G).
(ii) If f and g are A-differentiable functions at a point © € G, then the
function F:= f+ g is A-differentiable at = and (f + g)*(z) = fA(z) +
A
9% (z). -
(iii) If f is a A-differentiable function at a point x € G and C is a constant,
then the function p:= C - f is A-differentiable at z and (C f)*(z) =
C fA(2).
Theorem 2.3. Let G, f and A be as in Definition 1.1. Let Li(f, A, z)
be a continuous function at a point xg € G (Vk € Ny) (this condition is au-

tomatically fulfilled when A is a triangular matriz). If f is a A-differentiable
function in some neighborhood of the point xq, then

o(f,A,z) = klirr;oLnk(f,A,z)

is a continuous function at zg.

Theorem 2.4. LetG, f and A be as in Definition 1.1. If Ex(f,A,z) €
LY(G) (VN € N) and g(z) is a uniform A-derivative of a function f on
G, then g € L'(G) and §(j) = f(i)Aoo(J)-
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- Remark 2.1. Theorem 2.4 gives us a motivation to introduce sets
W(L1,A) and E(L', A) by formulas:

W= W(L', A= {f € L(G): (3g€ LMG))3() = f(1)Aco(4), Y5 € No }
E=E(L' A):={fe€ LY (G):Ex(f,A) € L'(G), YN € Ny}

Theorem 2.5. Let G, f, A, D(.A,G) and UD(A, G) be as in Definition
1.1. Then ENUD C ENW C D where we used UD and D instead of
UD(A,G) and D(A,G), respectively.

3. Proofs

(3.1.) Prof of the theorem 2.1.

0, s#3J

(i) Knowing that ;(s) = [x;(#)X,(x) = { L os=j

one obtains Li(x;,A,2) = Z)\ksf(j(s)xs(x) = Agix; ().

s=0 -
(ii) From (i) one obtains o(x;,A,z) = klim Li(xj,Ayz) = klim Akjxji(z) =
. — 00 — 00

AoojXj(z). Now we have

N—=1 Mg41—1

S Y [o(fiAe) - LifA0)] =

k=—-1 i=my

EN(vaA’x)

N—1 mipy1—1

Z Z P\OO7X]('U) - /\1])(](51;)] =

k=—1 i=my

N=1 Mg41—1

Xi(@) Y Y (Aoos = Aij) = x3(2)AN() -

k=—-1 t=my

(iii) Follows from Definition 1.1 and (ii).
oo

(iv) Knowing that the series Li(f,A,z) = Z)\ksf(s)xs(a:) is uniformly
s=0

convergent on G (by the premises), one obtains that the series
Li(f,A,z)X;(z) is uniformly convergent on G' (j € Ny is arbitrary).
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From this one obtains

[Lk(va 9“)

!I
Qe

[Z Aks f( S)Xs(w ] X;(z) =

Aks F(8) [ xs(@)%;(2) = Aei f(7) -

tqu

Il
=)

(v) As Le(f,A,z) — o(f, A, ) unifirmly on G, from (iv) one obtains

-1 ME41—1

[Ex(f,A,2)]"( }: > [fa £ 85 @)% (@)~ [ Li(f, A, 2)%5(2) =
k=-1 i=my

-1 Mrp1—1

‘Z 3 [a(f A D)) - L £ A, 2) ()] =

k=-1 i=my

N—=1 mg41—1

=Y Y Peifi)-NifG= f(])]= FG)ANG)-

k=-1 i= mE

This concludes the proof of Theorem 2.1

(3.2.) Prof of the theorem 2.2.

(i) As Ago = 1 (Vk € Ny), we have Ao = 1. If C is a constant and
s € Ny, we have '

C, for s=0

C'(s):cj;'CYSZ{O for s#0

Now we have Li(C,A,2) Z)\“C( Ixs(2) = AgoC =1-C = (' and

o(C,Az) = lim Li(C,A,2) = Ao = 1C = C'.

From this one obtains

N—=1 mp41-—-1

Ex(CA2)=)" > [0(C,A,z) - Li(C, A, 2)| =0, (YN € N),

k=-1 i=mg

and finally C4(z) = Nlim Ey(C,A2) = 0.
—00
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(i1) Ifis sufficient to prove that each of the operators L(f, A,2), o(f,A,z)
and Ex(f,A,z)is aditive in the first variable. From premisses we know
that f and g are A-differentiable at 2 € G, so we have

Li(f,A,2) = o(f,A,z) (k — o), Li(g,A,z) — o(g,A,z) (k= o).
and there exist A-derivatives
fAz) = hm Ey(f,A,z) and g%(z) = lir_n Ex(g,A,z).

Now we have

L/ + 9080 = 3o Ml + 90 (Dle) =

= Z Mes[£(8) + 3(8)] xs(2) =

o0

= Z Icsf + Z/\ksg(s X3($)

s=0

( A,.’L‘) + Lk(g{A’w)

o0 (o0}

(because series ZAksf(s)xs(x) and Z)\ksf](s)xs(w) anre convergent by
=0 ' =0

assumption),

0(f+g,A,x)=}}LréxoLk(f + g,A,x)zklirr;o [Li(f, A 2)+Li(g,A, 7)) =
=111—§Lk(f’A,x)+kh—>n;o Lk(g,A,x)za(f,A,x)+a(g,A,:L')

(because klim Li(f,A,z) and klim Li(f, A, ) exist by the premises), and
’ —00 —00

N=1 mgp41-1
Ex(f+g,M0)= Y > [o(f+g,Az)-Li(f+g,A,2)] =
: k=-1 i=m;
N1 mp41—1
=3 Y AblfA2)=Li(f, A 2)]+[o(g, A 2) - Lilg, A, )} =
k=—-1 i=my
N—1 Mgy1—1
= Z Z [U(f,A,l’)—Li(f,A,.'lf)]"'
k=—-1 i=my
N—1 mg41—1

+ Z Z gaA x)_ (g’A7x)] =

k=-1 i= Mg

= Ey(f,A,2)+ Ex(g, A, 2).
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(iii) It is sufficient to prove that each of the operators L(f, A, z), o(f, A, Z)
and En(f, A, ) is homogenous in the first variable. This can be easily
proved following the lines of the proof of the statement (ii). Theorem
2.2 is proved.

(3.3.) Prof of the theorem 2.3.

Let us chose arbitrary ¢ > 0. By the premises of the theorem, there
exists a neighborhood of zg, say zo + G, such that the function f is A-
differentiable in that neighborhood. It means there exist finite limits:

fA(zo+t):I}LI%OEN(f,A,xOth):'
N—1 Mmr41-1
=1lim Y Y [o(f,Azo+1)—Li(f,Az0+1)] (Vt€G,) and

N—00 .
k=—1 i=my;

N—1 mp41 -1

fMeo) = lim En(f,Azo)= lim ¥ > [o(f,Az0) = Li(f, A,20)] -

Ck=-1 i=my

As series on the right sides of last two equalities are convergent, their
members tend to zero as k — 00, and we have

‘U(f,A,xo+t).—Li(f,A,x0+t)—>0 (k— o0) (Vteq) and

o(f,A,zo) — Li(f,A,ze) = 0 (kK — 00).

This means that there exist numbers ¢y = #1(¢) and i3 = i3(¢) such that
for every ¢ > i3 = max{iy,%2} holds .

10(f, A, 2o + 1) — Li(f, A, zo + 1)] < -g- (Vt€G,) and

3.3.1
‘U(fv A,.’l’o) - Li(fa Ayz())l < % . ( . )

By the premises of the theorem, for every ¢ € IN¢ the function L;(f,A,z)
is continuous in z¢. Let us choose an g > 73. Then there exists a neigh-
borhood of the point zq, some z¢ + Gj(i,) such that for every t € GjGo) -
holds

|Lio(f’ Aa Zo + t) - Lio(f» A7 mO)l < § . (332)
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Without loss of generality we can assume Gs C Gj(i,). Now, from (3.3.1)
and (3.3.2) we can conclude that for every t € G,

lo(f, A, 20 + 1) — o(f, A, 20) =

= |o(f,A,zo + 1) = Li,(f, A, z0 + 1)+

+ Li,(f,Ayzo+ 1) — Liy(f, Ayzo) + Liy (f, Ayzo) — o(f, A, z0)| <
<lo(f,A,zo+1) — Liy(f, A, zo + )| + |Lig (fL A 20 + 1)—

— Lig(fy Ay zo)| + [ Lip (f, Ay 20) — o(f, A, 20)] <

<£+£+£—e
3 33 7

So, the function o(f, A, ) is continuous at zg.

(3.4.) Prof of the theorem 2.4.

From Ey(f,A,z) — g(z) (N — oo) uniformly on G, one obtains
g € LY(G) (by the Lebesque dominated convergence theorem), and

NEN(f,A)=gll1 = 0 (N — o0), so certainly |EN(f,A)—g}| — 0 (N — )
This means that

[En(f, MI"(5) = §(5), (N — o0) (V5 € No).

By the statement (v) of Theorem 2.1, for every j € N we have

[Ex(f, DIN(G) = F(5)oo(d) -
From the last two relations one obtains
§(7) = f(NAe(4) (V5 € No).
Theorem 2.4 is proved.

(3.5.) Prof of the theorem 2.5.
a) Let us take f € ENUD. This means that

Ex(f,A) € LY(G) YN € Ny) and NleooEN(f,A,w) = fA(z) =:g(z)
uniformly on G. By Theorem 2.4

g € LY(G) and §(j) = f(5)Aeo(4) (V] € No).
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[6]
[7]
8]

From this and the definition of the set W W(L', A) follows that
few.
Let us take f € W N E. Then there exsists g € LY(G) such that for

every j € No, §(j) = f(j)A(j). By the statement (v) of Theorem
2.1 we have

[Ex(f,M]"(G) = En(§) = f(5)Ax(5) (Vi € No).
From the last equality we have

£y(3) = 3y )

Aso(J)’

and this implies
& o oo [ Aw(d)
Eu(d) - 90) = :
~(7) = 9(7) 90)[Aw0)
From the uniqueness theorem, one obtains I}im [En(z)—g(z)] =0 ae.

on G,i.e. lim Ey(z) = g(z) a.e. on G. This, by the definition of the
N—0C
A-derivative means that f4(2) = g(z)a.e. on G,ie. f € D = D(A,G).

—1]—>0 (N — o), (Vj € Ny).

‘This implies that EN W C D. Theorem 2.5 is proved.
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JNPEPEHIINPAIGE HA #YHKIIMUA HA
I'PYIIN HA BNJIEHKHH

Meno Ilenuk

PezamMme

Bo 0Boj TpyX ro pasrienyBaMe KOHIENTOT Ha IMdpepeHNUpame Ha
KOMILIEKCHHM GYHKIMM AedUHUpPAHN Ha IPynyu Ha BMIeHKMH, O aclekT
Ha cyMabuiaHOCTHM Ha penoBM Ha BuiemExkuH. Bo Taa cMmmcia maBame
MaTpuyna mHTepnperanvja Ha C. N. Onnewer-MoT koHmenT Ha aude-
permmpame [5, Jebdununuja 3], u Hallla reHepaiusanyja Ha TOj KOH-
ment. McTo Taka ru maBaMe CBOjCTBaTa Ha OBOj FeHepaU3UpPaH U3BOI.
Honatamy, ce noxamyaa'nexa CEKOj MeTol Ha CyMUpame Ha PeIOBH Ha
BunerkuH, Ha HeKoj HauwH, HepMHMPaA* HEKOj KOHIENT Ha mepennu-
pambe Ha MHTerpabUiIEN. QYHKIWM Ha I'pynnTe Ha BuirenkuH.
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