Math. Maced. Vol. 7 (2009) 9–12

A NOTE ON HOMEOMORPHISMS

ZBIGNIEW DUSZYŃSKI

Abstract. Two topologies τ_w and τ'_w determined by a given topology τ on X are considered. Relation between homeomorphisms on (X, τ) and homeomorphisms on (X, τ_w) or (X, τ'_w) are indicated.

1. Preliminaries

Throughout the present paper (X, τ) , (Y, σ) mean topological spaces on which no separation axioms are assumed unless explicitly stated. The closure and the interior of a subset S in (X, τ) are denoted by cl (S) and int (S) respectively. A subset S of (X, τ) is said to be **semi-open** [6] (resp. **semi-closed** [1, Theorem 1.1]) if there exists an open set O with $O \subset S \subset cl (O)$ (resp. if there exists a closed Fwith int $(F) \subset S \subset F$). The family of all semi-open (resp. semi-closed) subsets of (X, τ) is denoted as SO (X, τ) (resp. SC (X, τ)). In [6, Theorem 7] Levine proved that if $A \in SO (X, \tau)$, then $A = G \cup N$ for a certain $G \in \tau$ and a certain nowhere dense N. Dlaska et al. made a deeper remark [3, Sec.1, p.1163]: $A \in SO (X, \tau)$ if and only if $A = G_A \cup N_A$ with G_A being a suitable open set and a nowhere dense $N_A \subset Fr (G_A)$ (Fr (S) stands for the boundary of S).

The remark of Dlaska et al. [3] concerning representation of semi-open sets can be reformulated as follows.

Lemma 1. [5]. Let (X, τ) be a topological space. Then, $A \in SO(X, \tau)$ if and only if $A = int(A) \cup N$ for a certain $N \subset Fr(int(A))$.

The reader is advised to compare the following lemma to Lemma 1.

Lemma 2. [5]. For any space (X, τ) , $B \in SC(X, \tau)$ if and only if there exist $F \in c(\tau)$ and $M \subset X$ with

(1) $B = \operatorname{int}(F) \cup M$ and

(2) $M \subset \operatorname{Fr}(F)$.

2. Homeomorphisms

Lemma 3. Let (X, τ) be any topological space. Let $\hat{\tau}_w$ denote the family of all subsets of X of the form $X \setminus (N \cup \bigcap_{\alpha \in A} G_\alpha)$, where A is arbitrary, $G_\alpha \in \tau$ for

¹⁹⁹¹ Mathematics Subject Classification. 54C08.

Key words and phrases. semi-open, semi-closed, nowhere dense sets; homeomorphism, semi-homeomorphism.

⁹

each $\alpha \in A$, and N is nowhere dense in (X, τ) . Then $\hat{\tau}_w$ is a basis for a certain topology, designed as τ_w , on X.

Proof. One easily checks that $\emptyset, X \in \hat{\tau}_w$. Consider arbitrary $V_1 = X \setminus (N_1 \cup \bigcap_{\alpha \in A_1} G_\alpha) \in \hat{\tau}_w$ and $V_2 = X \setminus (N_2 \cup \bigcap_{\beta \in A_2} G_\beta) \in \hat{\tau}_w$. We have (use [4, Theorem 4.2(1)])

$$V_1 \cap V_2 = X \setminus \left[\left(N_1 \cup \bigcap_{\alpha \in A_1} G_\alpha \right) \cup \left(N_2 \cup \bigcap_{\beta \in A_2} G_\beta \right) \right] =$$
$$= X \setminus \left[(N_1 \cup N_2) \cup \bigcap_{(\alpha,\beta) \in A_1 \times A_2} (G_\alpha \cup G_\beta) \right].$$

Thus $V_1 \cap V_2 \in \hat{\tau}_w$.

Now, we offer a few results related to the just introduced topology τ_w . Recall that a function $f: (X, \tau) \to (Y, \sigma)$ is said to be *irresolute* [2] if $f^{-1}(U) \in$ SO (X, τ) for each $U \in$ SO (Y, σ) .

Lemma 4. Let (X, τ) and (Y, σ) be any topological spaces. If $f: (X, \tau) \to (Y, \sigma)$ is irresolute, then $\hat{f}: (X, \tau_w) \to (Y, \sigma_w)$ is continuous, where $\hat{f}(x) = f(x)$ for each $x \in X$.

Proof. Let $T = Y \setminus (N \cup \bigcap_{\alpha \in A} G_{\alpha})$ be any member of $\hat{\sigma}_w$, where N is nowhere dense in (Y, σ) and $G_{\alpha} \in \sigma$ for each $\alpha \in A$. Then

$$\hat{f}^{-1}(T) = X \setminus \left(\hat{f}^{-1}(N) \cup \bigcap_{\alpha \in A} \hat{f}^{-1}(G_{\alpha}) \right),$$

where $\hat{f}^{-1}(N) \in \mathrm{SC}(X,\tau)$ and $\hat{f}^{-1}(G_{\alpha}) \in \mathrm{SO}(X,\tau)$ for each $\alpha \in A$, because f is irresolute. Obviously, for certain nowhere dense (in (X, τ)) M and M_{α} , and $O, O_{\alpha} \in \tau \ (\alpha \in A)$ we have

$$\hat{f}^{-1}(T) = X \setminus \left((O \cup M) \cup \bigcap_{\alpha \in A} (O_{\alpha} \cup M_{\alpha}) \right) = X \setminus \left[\left(M \cup \bigcap_{\alpha \in A} M_{\alpha} \right) \cup \bigcap_{\alpha \in A} (O \cup O_{\alpha}) \right].$$

This shows that $f^{-1}(T) \in \hat{\tau}_w$. Thus the proof is complete.

This shows that $f^{-1}(T) \in \hat{\tau}_w$. Thus the proof is complete.

A function $f: (X, \tau) \to (Y, \sigma)$ is **pre-semi-open** [2] if $f(V) \in SO(Y, \sigma)$ for each $V \in SO(X, \tau)$.

Lemma 5. Let (X, τ) and (Y, σ) be any topological spaces. If $f: (X, \tau) \to (Y, \sigma)$ is a pre-semi-open bijection, then the function $\hat{f}: (X, \tau_w) \to (Y, \sigma_w)$, defined as in Lemma 4, is open.

Proof. By hypothesis, the inverse function $f^{-1}: (Y, \sigma) \to (X, \tau)$ is irresolute, So, by Lemma 4, $(f^{-1}): (Y, \sigma_w) \to (X, \tau_w)$ is continuous. Therefore, $\hat{f}: (X, \tau_w) \to (X, \tau_w)$ (Y, σ_w) is open.

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be a *semi-homeomorphism* [2] if it is irresolute, pre-semi-open, and bijective.

Theorem 1. Let (X, τ) and (Y, σ) be arbitrary and let $f: (X, \tau) \to (Y, \sigma)$ be a function. We have the following sequence of implications: f is a homeomorphism $\stackrel{(1)}{\Longrightarrow} f$ is an open semi-homeomorphism $\stackrel{(2)}{\Longrightarrow} f$ is a semi-homeomorphism $\stackrel{(3)}{\Longrightarrow} \hat{f}: (X, \tau_w) \to (Y, \sigma_w)$ is a homeomorphism, where none of them need not be reversible.

Proof. (1) is clear by [2, Theorem 1.9], while (3) follows from Lemmas 4 and 5. For non-reversibility of (1) (resp. (2); (3)) we refer to Example 1 below (resp. [2, Example 1.1], Example 2 below). \Box

Example 1. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}, \sigma = \{\emptyset, X, \{a\}, \{a, b\}\}$. The identity id: $(X, \tau) \rightarrow (X, \sigma)$ is an open semi-homeomorphism, but it is not a homeomorphism.

Example 2. Let $X = \{a, b\}, \tau = \{\emptyset, X, \{b\}\}, \sigma = \{\emptyset, X, \{a\}\}$. Then, the identity $\hat{id}: (X, \tau_w) \to (X, \sigma_w)$ is a homeomorphism, but $id: (X, \tau) \to (X, \sigma)$ is not open.

Remark that openness and semi-homeomorphity are independent notions.

Example 3. (a). Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. The identity id: $(X, \tau) \to (X, \sigma)$ is open and it is not a semi-homeomorphism. (b). [2, Example 1.1] guarantees the existence of a semi-homeomorphism which is not open.

Remark 1. Note that implications (1) and (2) in Theorem 1 may be substituted by the following: f is a homeomorphism $\stackrel{(1')}{\Longrightarrow} f$ is an continuous semi-homeomorphism $\stackrel{(2')}{\Longrightarrow} f$ is a semi-homeomorphism. The converses of (1') and (2') may not be true, as seen by respective examples below.

Example 4. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}\}, \sigma = \{\emptyset, X, \{a\}\}$. Then id: $(X, \tau) \to (X, \sigma)$ is a continuous semi-homeomorphism, but it is not a homeomorphism, since id $(\{a, b\}) \notin \sigma$.

Example 5. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{b\}, \{b, c\}\}, \sigma = \{\emptyset, Y, \{b\}, \{a, b\}\}$. The identity id: $(X, \tau) \to (X, \sigma)$ is a semi-homeomorphism, but it is not continuous.

Continuity and semi-homeomorphity are independent of each other. Because of Example 5, it is enough to recommend the following one.

Example 6. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{\emptyset, X, \{a\}\}$. Then id: $(X, \tau) \rightarrow (X, \sigma)$ is continuous while it is not a semi-homeomorphism $(id(\{b, c\}) \notin SO(X, \sigma)).$

With the following lemma, the topology τ'_w was introduced in [5].

Lemma 6. Let (X, τ) be any topological space. Let $\hat{\tau}'_w$ denote the family of all subsets of X of the form $X \setminus \bigcap_{\alpha \in A} (G_\alpha \cup N_\alpha)$, where A is arbitrary, $G_\alpha \in \tau$, and N_α is nowhere dense in (X, τ) for each $\alpha \in A$. Then $\hat{\tau}'_w$ is a basis for a certain topology, designed as τ'_w , on X.

ZBIGNIEW DUSZYŃSKI

Lemmas 7&8 below can be obtained similarly as Lemmas 4&5 respectively.

Lemma 7. Let (X, τ) and (Y, σ) be any topological spaces. If $f : (X, \tau) \to (Y, \sigma)$ is irresolute, then $\hat{f}' : (X, \tau'_w) \to (Y, \sigma'_w)$ is continuous, where $\hat{f}'(x) = f(x)$ for each $x \in X$.

Lemma 8. Let (X, τ) and (Y, σ) be any topological spaces. If $f : (X, \tau) \to (Y, \sigma)$ is a pre-semi-open bijection, then the function $\hat{f}' : (X, \tau'_w) \to (Y, \sigma'_w)$ obtained as in Lemma 7, is open.

Theorem 2. Let (X, τ) and (Y, σ) be arbitrary and let $f: (X, \tau) \to (Y, \sigma)$ be a function. If f is a homeomorphism, then $\hat{f}': (X, \tau'_w) \to (Y, \sigma'_w)$ is a homeomorphism.

Proof. Lemmas 7&8.

Example 2 shows that the implication in Theorem 2 may be irreversible.

Problem. Indicate a space (X, τ) such that the topologies τ_w and τ'_w considered above, are different.

References

- [1] C. G. Crossley, S. K. Hildebrand, Semi-closure, Texas J. Sci., 22(2-3) (1971), 99-112.
- [2] C. G. Crossley, S. K. Hildebrand, Semi-topological properties, Fund. Math., 74 (1972), 233-254.
- [3] K. Dlaska, N. Ergun, M. Ganster, On the topology generated by semi-regular sets, Indian J. Pure Appl. Math., 25(11) (1994), 1163-1170.
- [4] J. Dugundji, Topology, Allyn&Bacon, Inc., Boston 1966.
- [5] Z. Duszyński, T. Noiri, Semi-open, semi-closed sets and semi-continuity of functions, submitted.
- [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.

Casimirus the Great University Institute of Mathematics pl. Weyssenhoffa 11 85-072 Bydgoszcz Poland