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POSITIVE RADIAL, SOLUTIONS OF CERTAIN SEMILINEAR
ELLIPTIC EQUATIONS IN ANNULAR DOMAINS

B. Vrdoljak

Abstract

In this paper it is established the existence, behaviour and
approximation of positive radially symetric solutions of semilinear
elliptic equation (1) in an annulus §2, when X and F satisfy the
corresponding sufficient conditions.

1. Introduction

Consider the semilinear elliptic equation

Au(z) + A - Flu(z), |z]) - ui(z) = 0 (1)

in an annulus Q@ = {z € R*: A < |z| < B}, where 4, B € R* = (0, o),
n > 2, F: R°x Rt — Rt is a C! function, R° = [0, 00), A > 0 is a real
parameter, ¢ € R°, A can be arbitrarily small and B arbitrarily large.

The equations of the form (1) occur in a wide variety of situations
(see e.g. [1-5]). When AF = K(z) and ¢ = (n + 2)/(n — 2), (1) is known
as the conformal scalar curvature equation in R®, n >'3. When AF = 1,
(1) is known as the Lane-Emden equation in astrophysics or sometimes
the Emden-Fowler equation, where u corresponds to the density of a single
star. The Matukuma equation Au + u?/(1+ |z|>) = 0in R3, ¢ > 1, as a
mathematical model to describe the dynamics of globular clusters of stars,
where u > 0 is the gravitational potential.
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The equations of the form (1) were studied by many authors. Most
results were obtained by variational techniges or by shooting methods. In
this paper we shall use the qualitative analysis theory and the topological
retraction method (see e.q. [6-8]). We shall establish the existence and
approximation of the certain radial solutions of (1) for all A < |z| < B.

Radial solutions of the equation (1) are the functions u = u(r), r = |z|
satisfying the ordinary differential equation

w'(r)+ (n -1/ (r)/r+ A Flu(r), r) -u¥(r) =0, re[4,B. (2)
. For n > 3, setting
t=r""" u(t)=u(r) and f(u(t), t) = F(u(r), ),
(2) can be rewritten as

W' () + A-pt)- f(u(?), t) -wI(t) =0, te€la,?b (3)
(‘= d/dt), where

p(t)=(n— 2)_2t—’°, k=2+4+2/(n-2), a=B>", b= A",
For n = 2, setting

t=—Inr, u(t)=u(r), f(u(t),t)=F(u(r),r),
equation (2) can also be rewritten as (3) with
p(t)=e?, a=-ln B, b=-In A

Now we establish the existence, behaviour and approximation of posi-
tive solutions u(t) of equation (3) depending on zero, one or two parameters
(integration constants) with the corresponding initial or boundary condi-
tions.

2. Preliminaries

Let us rewrite the equation (3) as the equivalent system
u'=v, v'=-2p(t) flu, t)u?, t =1, (4)

which satisficies the conditions for existence and uniqueness of solutions of
Cauchy problem in ¥ = Dx R x Rt,R° C D CR.

We shall consider the behaviour of the integral curves (u(t), v(t), t) of
system (4) with restect to the sets ¥ and

o= {(u, v, t) € X: hl(t) <u< h2(t), gl(t) <v< g2(t), t e I},
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= (a,b), b < 0o.- The funkctions h;, g; € CYI), i = 1,2, wﬂl be
effectlvely defined. The boundary surfaces of o are

U; = {(u, v,t) € Clo:  H; = (=1)u— hi(t)] = 0},

Vi={(u,v,t) €Clo: G;=(-1)[v-g(t)]=0}, i=1,2.

Let us denote the vector field defined by (4) by X. By means of sign
of the scalar products

Puy = (VH;, X) = (=1)"(v — h) on. U;, -
Pv; =(VG;, X) = (=) Apfuf+g)) on Vi, i=1,2,
we shall establish the behaviour of integral curves of (4) with respect to
sets 0 and X. The vectors VH; and VG;, ¢ = 1, 2 are vectors of external
normal on surfaces U; and V;, 1 =1, 2.
In this paper we shall use the constants ¢ d,m,s, a, 0,0, u 6 Rt
and the sets U = (U3 UU)\(Vh4 UV3) and V = (V1 U Vg)\(Ul u Us).
3. The casen > 3

Consider equation (3) for n Zl 3, i.e., the equa;tioﬁ
u"() + Mn — 2) "2 f(u, t)uq(t) =0, . .(5)

where k = 2+2/(n—2) qg>0.
Equation (5) is equivalent to the system

=0, v=-An-2)"2" f(u, t)ur, i) =1 (6)
Let - o
n={(n, 1) € R hi(t) <u < hat), ¢ [a, B),

where the fukctions h; will be defined in the following theorems.
Theorem 1. Let

hi =60t —a), hy=oca(t—a), (7)

Bb—a+1)<a<pf/8, 0<0<1, (8)
0< A< B(n—-2)Y2d*da™%b—a)? | (9)

and the function f satisfies the condition

0< f(u,t)<d for (u,t)e€n. | | (10)
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Then equation (5) has a one—parameter family of solutions u(t) satisfying
the conditions

bo(t—a)<u(t)<a(t—a) Vte(a,bd], ula)=0,

(11)
B<u'(t)y<pb+1-t) Vte(a,b), v'(b) =25

Proof. Let consider the behaviour of integral curves of system (6) at
points of the surfaces U;, and V;, ¢ = 1, 2, where the functions h; are defined
by (7) and g¢; by

91=8, g=pB(n+1-1t). (12)
In view of the conditions of Theorem 1, for the corresponding scalar
products Pu; and Pv; we have
Puy=-v+h <-g1+hi=-B+0c<0 onU,
Puy=v—hy<go—hy=pb+1-t)—a<0 onU,,
Poy = AMn—2)"2t"Fful 4 g} = A(n—2)"2t"%fu? > 0 on V;,
Poy=-A(n—2)"2t"* ful—g} > Nn-2)"2a"*da?(b—a)?+5>0 on V;.

Consecvently, the corresponding set U is a set of points of strict en-
trance and the corresponding set V' is a set of points of strict exit of integral
curves of (6) with respect to the sets ¢ and X. Moreover, we can note that
points of the curves L;; = U; NV;, ¢, j = 1,2 are not points of exit and
that all points of exit are points of strict exit.

Hence, according to the retraction method (see [6-8]) the system (6)

has a one-parameter family of integral curves (u(t), v(t), t) belonging to
the set o for all ¢ € (a, b), i.e.,

hi(t) < u(t) < hat),  g1(t) < v(t) < ga(?) (13)

for all t € (a, b), where the functions h; are defined by (7) and g; by (12).
These integral curves satisfy also the conditions

u(a) =0, fa(b — a) < u(b) < afb — a),
v(b) = B, B<v(a)<p(b—a+1),
because the integral curves of system (6) are defined and continous on [a, b].

Thus, equation (5) has a one-parameter family of solutions u(t) which
satisfy conditions (11).

Theorem 2. Assume (7), (10) and
0< A< (B-0a)(n~-2) a"da™(b-a)"9, O<ba<f<a (14)

Then equation (5) has a two-parameter family of solutions u(t) satisfyng
the conditions
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ot — a) < u(t) < a(t - a) and

15
f-(B-00)i-a)/b-a)<u'()<f Vie(@d,
and a unique solution which satisfies the additional conditions

u(a) = 0, u'(a) = B. (16)
Proof. Here is :
g =0 — (8- 0a)(t—a)/(b-a), @ =4,
Puy<—g1+h < -ba+6a=0 on Uy,
Puy <gs—hy=f-a<0 on U,,
Pvy =A(n—2)"2t7 % fu? — (8 — 0a)/(b - a) <
<AMn-2)"%a"%da?(b-a)? — (8 —0a)/(b—a) <0 on Vi,
Pvg=—-Xn—-2)"2t"Fful <0 on Vs.
According to this all points of set do are points of strict entrance of
integral curves of system (6) and system (6) has a two—parameter family of

solutions satisfying the corresponding conditions (13) for all t € (a, b}, i.e.,
all solutions of (6) with the initial conditions

hy (to) < u(to) < hQ(to), gl(tO) < ’v(tp) < gz(to)

for every ty € (a, b), satisfy also conditions (13) for all ¢ € (%o, b]. Con-
sequently, and since system (6) satisfies the conditions for existence and
uniqueness of solutions, the solution with the initial conditions

u(a) = 0, v(a)=f (17)
satisfies also conditions (13) for all ¢ € (a, b].

Hence, equation (5) has a two—parameter family of solutions u(t) which
satisfy the conditions (15), and the unique solution with initial conditions
(16) also satisfies conditions (15). '

Now let us consider solutions u(t) of equation (5) which are not mono-
tone and u(t) > m > 0 on the bounded interval [a, b].

Theorem 3. Let ,
0<c< f(u,t)<d on 7, (18)
0<(<2(b-a), (19)
(b/a)*(d/c)[1+(a/4m)(b—a+()*)? < [4(b—a)+(]/[4(b~a)-(], (20)
(a/c)[2 = ¢/(2(b~ a))](n - 2)*bFm™ 7 < A <

< (a/d)[2+ ¢/ (26— )] (n = 2aHTm + (a/8)(b— a+ (P, (21)
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Then equation (5) has a unique solution satisfying the conditions

hl(t) < ’U,(t) < h2(t), a1 (t) < u'(t) < gz(t) (22)
for all ¢ € [a, b) and
ud)=m, u/(b)=—a(b-a+(/2), (23)

h
wahere hy = —a[t® — (a + b)t + ab] + m,

hy = —aft’ — (a+b— ()t +ab—b(] +m,
g1=~a[2-¢/(2(b-a))](t-a) +a(b-a—(),
g2 = —a[2+4 (/(26 - )]t - 0) + ab - a).
Proof. Here we have

Puy > —ga+hi =a(t—a)/[2(b—a)] >0 on U,

Puy >g1 — hy = a(t —a)/[2(b—a)] >0 on U,

Pvy >Aemi(n — 2)"2b_k - a[2 — (/(2(b - a))] >0 on Vp,

Pvy > — M[m + (a/4)(b- a + ()*]%(n - 2)2a"F+

+al2+¢/(2(b-a))] >0 on V.

(24)

Thus, the corresponding set do is a set of points of strict exit of integral
curves of system (6). According to the retraction method, system (6) has
at least one solution which satisfies the corresponding conditions (13) for
“all t € (a, b). This solution also satisfies the conditions

m < u(a) < m+ a(b - a), u(b) = m,
alb—a-()<v(a)<alb—a), v(b)=-adb-a+(/2),
because the conditions for existence and uniqueness of solutions are valid.
Therefore, equation (5) has exactly one solution satisfying conditions (22)

and (23).
Now consider solutions of (5) on the unbounded interval [a, co) with
the initial condition u(a) = 0 or u(a) = m > 0.

Theorem 4. Let
0<b0<1,, s=2/(n-2),
0< A< 0a’s(s+1)(n—2)%d7 a9,
0< f(u,t)<d for 0<u<a, t>a. (25)

The equation (5) has a one—parameter family of solutions satisfying the
conditions
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0 < u(t) < afl - (a/t)?] Vte (a, 0) and wu(a)=0,
0<u'v(vt)<0a.§;ast"’”1 Vte€la, ).

Proof. Let us note that

hy=0, hy=all-(a/t*], g1=0, gs=0asa’t™*!
Puy <—q1+h, =0 on U;\L, L=UnV,
Puy <gy—hy=(0-1)sa°t™*"1 <0 on U,
Pvy = A(n - ‘2)"2t_k fu!>0 on Vi\L,
Puy >t ¥[@as(s+1)a® = Ada'(n—-2)"%]1>0 on V3,
Puy =Pvy =0 on L,

where L is an integral curve of (6). All points of exit are points of strict
exit and here we can use the proof of Theorem 1.

Theorem 5. Suppose s = 2/(n — 2),
0<fh<(<p<l, (26)
(1+a/m)id/c < pfc, (27)

Caa’s(s+1)(n—2)%c'm™7 < XA < paa’s(s+1)(n—2)*(m+a) ?d7!

0<e< f(u,t)<d for 0<m§u$m+a, t>a. (28)

Then equation (5) has a one—parameter family of solutions u(t) with the
properties

u(a) =m,
m + 8ol — (a/t)*] < u(t) < m + o[l — (a/t)*] Vt € (a, ),
Casa®t™* ! < u'(t) < pasa®t™*"! Vt € [a, ).
Proof. Here we have
hi=m+0al - (a/t)’],  h2=m+ofl-(a/t)’],

g1=Casa’t™" 1, g2 =pasa’t >l
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Pu; < —g1+hy =asa®t™*" (0 - ()<0 on U,

Puy < g;—hy=asa®t™ ' (u-1)<0 on U,

Po; >t Aemi(n-2)"2 - (as(s+1)a’] >0 " on W,

Po, >t uas(s+1)a® - dd(m+ )i (n-2)"%]>0 on V,

and we can use the proof of Theorem 1.
Using Theorems 1, 2, and 3 one can prove the following statements:

(1) If conditions (8), (9) and (10) are valid for the functions
h1=0a(b—t), h2=a(b—t),
then equation (5) has a one-parameter family of solutions u(t) with the
properties
bab-t)y<u(t)<alb—t) Vt€la,b), ud)=0,
—Bit-a+1)<d ()< -8 Vte(a b, u(a)=-8.
(ii) Suppose that
0< A< B(n—-2) dd ta*b-a)19, 0<f<a, (29)
hy =0, hy = a(b—t)

and that condition (10) holds. Then equation (5) has a unique solution
u(t) satisfying the conditions

0 < u(t) < alb-1t) and
-f<u(t)< ~p(t—-a)/(b—a) ViE]la,b),
u(b) = 0, u'(b) = -8.

(iii) Assume (18), (19), (20) and (21). Then equation (5) has a
one-parameter family of solutions satisfying conditions (22) for all ¢ € (a, b)
and

' (a) = a(b—a—(/2), u(b)y=m,
where the functions h; are defined by (24) and the functions g; are
g1=—a[2+(/(2(b~a))](t - a) + a(b-a-(/2),
g2 =—a[2-¢/(2(b- a)](t - a) + a(f — e~ (/2).
(iv) Assume (18), (19), (20), (21) and let
hy = ——a[t2 —(a+b)t+ abl+m,
hy = —a[t® —(a+ b+ )t +a(b+ ()] +m,
g1 = —af2 - ¢/(2b - a)](t- @) + a(b - a),
g2 = ~al2+ /(b - a))](t - a) + alb - a+ ().

(30)
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Then equation (5) has a one-parameter family of solutions with properties
(22) for all t € (a, b) and

u(a) =m, u'(b) = —a(b—a—(/2).

(v) Assume (18), (19), (20), (21) and let the funkctions h; are defined
by (30) and

g1 =—a[2+ (/2 - )]t - a) + a(b—a +(/2),
g2 =—al2-(/(2(b-a))](t—a)+a(b—a+(/2).
Then equation (5) has a two—parameter family of solutions satisfying con-
ditions (22) for all ¢ € (a, b] and
u(a) = m, u'(a) = a(b—a+ (/2).
In cases (i) and (iii) we have
Pu;,>0 on U;, Py; <0 on V, t=1,2,
in case (iv)
Pu; <0 on U;, Pv;,>0 on V;,, t=1,2.
It means that the two opposite sides of C'lo are a set of strict exit, and
the other two sides are a set of strict exit. Hence, here we can use proof of
Theorem 1.
In case (v) is
Pu; <0 on U, pv; <0 on V;, 1=1,2

and we can use proof of Theorem 2.
For statement (ii) it is necessary to note that

Pu;>0 on U;, 1=1,2, Pvy >0 on V;,
Pvy >0 on Vi\K, Py =0 on K=UinW

and that all points of exit are points of strict exit. Here proof of Theorem
3 can be used.

4. The case n =2

In this case for equation (3) we have

u" () + X-e7 f(u, t)ul(t) = 0 : (31)
and for system (4) we have
u=wv, o' = —X-e7? f(u, )u?, t'=1.

Let us first notice that the following theorem is valid. .
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Theorem 6. For equation (31) the conclusions of Theorems 1-3 and
statements (i)-(v) hold, whenever in conditions (9), (14) and (29) we have
e?® instead of (n — 2)? ¥, and in conditions (20) and (21) the constants
(b/a)*, (n — 2)*a* and (n — 2)?b* are replaced by e(b=2) ¢2a apg 2
respectively. : . r

Instead of Theorems 4 and 5 one can prove the following two theorems.

Theorem 7. If (25) and
0<A<4fe¥edtal™e, 0<f<1
hold, then equation (31) has a one-parameter family of solutions satisfying
the conditions

O0<ult)<a [1 - e‘z(t"“)] Vit e (a,©), ula)=0,

0 < u'(t) < 20 ~2(t-9) Vi€ [a, 00).

Theorem 8. Assume (26), (27), (28) and
4aecImT i< A<4paet®d i (m+a)?.

Then equation (31) has a one-parameter family of solutions u(t) satisfying
the conditions '

m+6a [1 — 6_2“_“)] < u(t) < m4a [1—6"2“‘“)] Vt> a, u(d):m,

20 e 217 < /(1) < 2nae Y VYi>a.

Remark. Some results also hold for ¢ < 0. In this case we have to
modify certain conditions.

5. Approximation of solutions

We can note that the obtained results also contain the answers to the
approximation of solutions u(t) whose existence is established. The errors
of the approximation for u(t) and u/(t) are defined by the functions

h(t) = ha(t) = ba(t),  g(t) = g2(t) — 91 (2)
respectively.
Let us point out some cases.

(a) In the case of Theorem 1 we have
h(t) = o(1-0)(t—a), g(t)=p(b-1), te(ab).

The errors are sufficiently small, for every ¢ € (a, b), when a and G are
sufficiently small. ' SR : :
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(b) In the case of statement (iii) we have

B(t) = alb—1), g(t)=al(t-a)/(b—a), t€(ab).

The errors depend on a{ and we can note that those can be sufficiently
small in many examples.

(c) In Theorem 8 we have

h(t) = a(1 - 6) [1 - e_z(t““)] , o 9(t) =2a(p - 4)6—2(1—11)’ t>a.
Here o | | . | -

max{h(t)} = o1 - 9), max{g(t)} = 2a(u K (), Vi>a

can be arbitrarily small and g(¢) tend to zero as t — oo .
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IIOBNTUBHU PAIINMJAJIHA PEIIIEHNUJA HA
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