Математички Билтен
23 (XLIX)
1999 (25-32)
Скопіє, Македонија

ON SOME CHARACTERISTIC SUBGROUPS OF THE GROUP OF UPPER TRIANGULAR MATRICES

S. Kera and K. Trenčevski

Abstract

We define and describe a regular subgroup of the Lie group $K_n(F)$ of $n \times n$ upper triangular real or complex matrices with one on the main diagonal. We find that the number of such subgroups is n! and we propose a construction of a graph over the set of these subgroups.

1. Introduction

Let F be the field of the real or complex numbers. By $K_n(F)$ we denote the Lie group of the $n \times n$ upper triangular real or complex matrices whose diagonal elements are one. For a given set S of some pairs of indices (i,j), $1 \leq i < j \leq n$, the corresponding entries of the matrices in $K_n(F)$ are called fixed elements, and all the other upper triangular entries are called free elements. The complement of S in the set of all those pairs (i,j) is denoted by S', i.e. $S' = \{(i,j)|1 \leq i < j \leq n, (i,j) \notin S\}$. The set S induces a subset G of matrices in $K_n(F)$ whose all the fixed elements are zero, while the free elements are arbitrary elements of F. The subset G' of $K_n(F)$ defined by S' is called dual to G. We note that G' can be obtained from G by replacing the fixed elements by the free elements and vice versa. If S is such a set that both of the induced subsets G and G' are (Lie) subgroups of $K_n(F)$, then we call G to be a regular subgroup of $K_n(F)$. The regular subgroups are called cells also. Note that G is a regular subgroup of $K_n(F)$ if and only if G' is a regular subgroup of $K_n(F)$.

2. Main results

Let $M_n = \{1, \dots, n\}$ and let ρ be a relation in M_n such that $j\rho i$ implies j > i. The dual relation ρ' in M_n is defined by $j\rho'i$ if and only if j > i and $(j,i) \notin \rho$. For given ρ we join the set $S = \{(j,i) : i\rho j\}$. S induces a subset G of $K_n(F)$ and its dual G'.

Proposition 2.1. The relation ρ corresponding to G is transitive if and only if its dual set G' is a subgroup of $K_n(F)$.

Proof. Note that $(j,i) \notin \rho$ if and only if $j\rho'i$ which means that $a_{ij} \equiv 0$. Now let us assume that ρ is transitive. Let A and B be two matrices of the set corresponding to ρ' and $AB = C(=[c_{pq}])$. Let $(j,i) \notin \rho$. For the element $c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$ if there exists k such that $a_{ik}b_{kj} \neq 0$, then $a_{ik} \neq 0$ and $b_{kj} \neq 0$ and hence $j\rho k$ and $k\rho i$. Since ρ is transitive, then $j\rho i$ - a contradiction with the assumption that $(j,i) \notin \rho$. Thus, $c_{ij} = 0$ which means that if ρ is transitive, then the corresponding dual set G' is a subgroupoid of $K_n(F)$.

Let A be a matrix from the set induced by ρ' and let B be the inverse matrix of A. Let $a_{ij} \equiv 0$, i.e. $j\rho'i$. Then we have to show that $b_{ij} \equiv 0$. Thus it will follow that if ρ is transitive, then the corresponding dual set G' will be a subgroup of $K_n(F)$.

As j > i, the Kronecker delta $\delta_{ij} = 0$, i.e. $\sum_{k=1}^{n} a_{ik}b_{kj} = 0$. If there exists k such that $a_{ik}b_{kj} \neq 0$, then $a_{ik} \neq 0$ and $b_{kj} \neq 0$. Hence $j\rho k$ and $k\rho i$, and since ρ is transitive, it follows that $j\rho i$ which contradicts to $j\rho' i$. Thus, for any $k \in \{1, \dots, n\}$, $a_{ik}b_{kj} = 0$. Specially, for k = i, since $a_{ii} = 1$ b_{ij} must be zero.

Conversely, let us assume that the dual set G' is a subgroup of $K_n(F)$. Let $j\rho i$ and $i\rho k$, i.e. let a_{ij} and a_{ki} be non-zero. We choose a matrix A from the set corresponding to ρ' , such that $a_{ks}=0$ and $a_{sj}=0$ for any s such that k < s < j and $s \neq i$. Moreover, we assume that $a_{ij} \neq 0$ and $a_{ki} \neq 0$. The matrix $C = A^2 = AA$ belongs to the same set as A, because this set is a group by the assumption. So, we have

$$c_{kj} = \sum_{s=1}^{n} a_{ks} a_{sj} = a_{ki} a_{ij} \neq 0.$$

Since c_{kj} is non-zero, then $j\rho k$. Thus ρ is a transitive relation. \parallel As a direct consequence we obtain the following proposition.

Proposition 2.2. The cell G of $K_n(F)$ induced by a relation ρ is a subgroup of $K_n(F)$ if and only if the dual relation ρ' is transitive.

Now we can prove the following theorem.

Theorem 2.3. For any n, the number of cells in $K_n(F)$ is equal to n! and the number of all relations ρ such that ρ and ρ' are transitive is equal to n!, too.

Proof. From to the propositions 2.1 and 2.2 it follows that for any n the number of the cells in $K_n(F)$ is equal to the number of the relations ρ such that ρ and ρ' are transitive. So, it is sufficient to show that there exists a bijection between the set of relations ρ such that ρ and ρ' are transitive and the set S_n of all permutations τ on $M_n = \{1, \dots, n\}$.

Let $\tau \in S_n$. We define a relation $\rho \in M_n$ by $i\rho j$ if i > j and $\tau(i) < \tau(j)$. Then ρ' is defined by $i\rho'j$ if i > j and $\tau(i) > \tau(j)$. It can be verified easily that ρ and ρ' are transitive. Conversely, let ρ be a relation in M_n such that ρ and ρ' , defined as above, are transitive. By induction of n we can show that there exists (unique) permutation τ such that $i\rho j$ if and only if i > j and $\tau(i) < \tau(j)$.

Let ρ be a relation on M_{n+1} such that ρ and ρ' are transitive. Then the restrictions $\bar{\rho}$ and $\bar{\rho}'$ of ρ and ρ' on the set M_n are also transitive and mutually dual. So, there exists (unique) permutation τ_n which induces the relations $\bar{\rho}$ and $\bar{\rho}'$. For any $i \in M_n$ only one of the possibilities $(n+1)\rho i$ and $(n+1)\rho'i$ is true, and since ρ and ρ' are transitive, then the permutation τ_n can be prolonged (uniquely) to a permutation $\tau_{n+1}:M_{n+1}\to M_{n+1}$ which has the required properties. So, the considered mapping $\tau\mapsto \rho$ is a bijection.

Note that if $\tau \mapsto \rho$, defined as in the proof of the theorem 2.3, then for the dual permutation τ' , defined by $\tau'(i) = n + 1 - i$, $\tau' \mapsto \rho'$ is true.

The set of n! relations ρ such that ρ' and ρ' are transitive, can be parameterized as follows. Let the number of elements of the set

$$\{x:x\in M_n,\quad f\rho x\}$$

be i_j for $2 \le j \le n$. Since $0 \le i_j \le j - 1$, then there are exactly n! such sequences (i_1, i_2, \dots, i_n) $(i_1 = 0)$ and for any two different relations we have different sequences. Therefore, every such sequence corresponds to unique relation ρ . Also, it holds for the cells. So, we have proven the following theorem.

Theorem 2.4. For any sequence (i_1,i_2,\cdots,i_n) , $0 \le i_j \le j-1$ for $1 \le j \le n$, there exists unique relation ρ on M_n such that ρ and ρ' are transitive, and j is in relation ρ with i_j elements of M_n (i.e. there exists unique cell such that in the j-th column of its matrices there are exactly i_j elements equal to zero $(1 \le j \le n)$). \parallel

The cell, whose matrices in the j-th column have exactly i_j free elements $(1 \leq j \leq n)$, is denoted by $C_{i_1 i_2 \cdots i_n}$. As a consequence of the Theorem 2.4 we obtain the following corollary.

Corollary 2.5. Let ρ and ρ' be transitive relations on M_n . Then for any $t \in \{0, 1, \dots, n\}$ there exist t elements $i_1, \dots, i_t \in M_n$ unique up to

permutation, such that by prolonging the relation ρ by $(n+1)\rho i_1, \dots, (n+1)\rho i_t$ again we obtain transitive relations ρ and ρ' on M_{n+1} . Also, any cell of $n \times n$ matrices can be prolonged to a cell of $(n+1) \times (n+1)$ matrices by adding a new column with given number of fixed zeros in unique way.

By the matrix mapping $(i,j) \to (n+1-j,n+1-i)$ every cell maps into cell. Indeed, if ρ and ρ' are transitive relations on the set M_n , then their inverse relations ρ^{-1} and ρ'^{-1} defined by

$$j\rho^{-1}i \iff i\rho j \text{ and } j\rho'^{-1}i \iff i\rho' j$$

also are transitive. Hence we obtain the following corollary.

Corollary 2.6. Any cell of $n \times n$ matrices can be prolonged to a cell of $(n+1) \times (n+1)$ matrices by adding a new row with given number of fixed zeros in unique way.

Note that the dimension of a cell as a Lie group, i.e. the number of the free elements, is equal to the number of all pairs (i, j) such that $i\rho'j$.

3. Graph over the regular subgroups $G_n(F)$

In the set $G_n(F)$ of all cells, t.e. regular subgroups, we define a relation ">" such that $C_1 > C_2$ if C_2 can be obtained from C_1 by replacing one free element by fixed zero. Note that $dimC_1 - dimC_2 = 1$ and this relation can be extended up to transitive relation. Then, we prove the following proposition.

Proposition 3.1. For any cell C there exist exactly n-1 cells C' such that C > C' or C' > C. More precisely

- (i) if dimC = n(n-1)/2, then there exist n-1 cells C' such that C > C',
- (ii) if dimC = 0, then there exist n 1 cells C' such that C' > C,
- (iii) if $0 < \dim C < n(n-1)/2$, then there exist cells C' and C'' such that C' > C > C''. The number of such cells C' and C'' together is n-1.

Proof. One can verify that C > C' or C' > C if and only if the corresponding permutations τ and τ' are such that $\tau'(1)\tau'(2)\cdots\tau'(n)$ is obtained from $\tau(1)\tau(2)\cdots\tau(n)$ by a transposition of two neighbor elements $\tau(i)$ and $\tau(i+1)$. So, we get the first part of the proposition. The statements in (i) and (ii) are trivial. The statement in (iii) is a consequence of the following argument. If $\tau(1)\tau(2)\cdots\tau(n)$ is a permutation on M_n different from $12\cdots n$ and $n(n-1)\cdots 1$, then there exists at least one number $p \in \{1,2,\cdots,n-1\}$ such that $\tau(p) < \tau(p+1)$ and there exists at least one number $q \in \{1,2,\cdots,n-1\}$ such that $\tau(q) > \tau(q+1)$.

Now we give some examples of regular subgroups and the corresponding relation ">" for n=2,3,4. The free elements are denoted by *.

Example 1. For n=2, there are two regular subgroups

$$C_{01} = \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}, \qquad C_{00} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

and the relation > is given by

$$C_{01}$$
 \downarrow
 C_{00}

Example 2. For n = 3, the regular subgroups are the following

$$C_{012} = \begin{bmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix}, \qquad C_{000} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$C_{002} = \begin{bmatrix} 1 & 0 & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix}, \qquad C_{010} = \begin{bmatrix} 1 & * & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$C_{011} = \begin{bmatrix} 1 & * & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad C_{001} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix};$$

the relation > is given by

$$\begin{array}{c|c}
C_{012} \\
C_{002} & C_{011} \\
\downarrow & \downarrow \\
C_{001} & C_{010} \\
& & \swarrow
\end{array}$$

Example 3. For n=4, the regular subgroups are the following

$$C_{0123} = \begin{bmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad C_{0000} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$C_{0023} = \begin{bmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad C_{0100} = \begin{bmatrix} 1 & * & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$C_{0113} = \begin{bmatrix} 1 & * & * & * \\ 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad C_{0010} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & * & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$C_{0122} = \begin{bmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad C_{0001} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$C_{0013} = \begin{bmatrix} 1 & 0 & 0 & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad C_{0110} = \begin{bmatrix} 1 & * & * & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$C_{0022} = \begin{bmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad C_{0101} = \begin{bmatrix} 1 & * & * & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$C_{0103} = \begin{bmatrix} 1 & * & * & * \\ 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad C_{0020} = \begin{bmatrix} 1 & 0 & * & 0 \\ 0 & 1 & * & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$C_{0112} = \begin{bmatrix} 1 & * & * & * \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad C_{0002} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & * & * \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$C_{0121} = \begin{bmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad C_{0002} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & 0 \end{bmatrix},$$

$$C_{0012} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & 0 \\$$

$$C_{0003} = \begin{bmatrix} 1 & 0 & 0 & * \\ 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad C_{0120} = \begin{bmatrix} 1 & * & * & 0 \\ 0 & 1 & * & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$C_{0021} = \begin{bmatrix} 1 & 0 & * & 0 \\ 0 & 1 & * & * \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad C_{0102} = \begin{bmatrix} 1 & * & 0 & * \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

the relation > is given by

References

- [1] A. A. Borisenko and Yu. A. Nikolaevskii, Grassmann manifolds and Grassmann image of submanifolds, Uspehi Mar. Nauk, 46 (1991), 41-83 (in Russian).
- [2] K. Trenčevski, Generalization of the Grassmann Manifolds, accepted for publication in the Proceeding of the Second conference of Balkan geometers, Thessaloniki 24-27 June, 1998. submitted for publication in Balkan Journal of Geometry and Its Applications.

ЗА НЕКОИ КАРАКТЕРИСТИЧНИ ПОДГРУПИ НА ГРУПАТА ОД ГОРНОТРИАГОЛНИ МАТРИЦИ

С. Кера и К. Тренчевски

Резиме

Во трудот е дефинирана класа од подгрупи на Лиевата група од горнотриаголни $n \times n$ матрици со единици по дијагоналата, наречени регуларни подгрупи. Се докажува дека бројот на таквите подгрупи е n! и се воведува ралација > во множеството на овие подгрупи.

Institute of Mathematics P.O.Box 162, 1000 Skopje Macedonia