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ON SOME CHARACTERISTIC SUBGROUPS OF THE GROUP
OF UPPER TRIANGULAR MATRICES

S. Kera and K. Trenéevski

Abstract

We define and describe a regular subgroup of the Lie group
Kn(F) of n x n upper triangular real or complex matrices with one
on the wain diagonal. We find that the number of such subgroups
is n! and we propose a construction of a graph over the set of these
subgroups.

1. Introduction

Let F be the field of the real or complex numbers. By K,(F') we denote
the Lie group of the n X n upper triangular real or complex matrices whose
diagonal elements are one. For a given set S of some pairs of indices (7, ),
1 < i < j £ n, the corresponding entries of the matrices in K,(F) are
called fized elements, and all the other upper triangular entries are called
free elements. The complement of S in the set of all those pairs (i,7) is
denoted by S/, ie. S = {(i,j)]1 <1 < j < n, (4,7) ¢ S}. The set
S induces a subset G of matrices in K,(F) whose all the fixed elements
are zero, while the free elements are arbitrary elements of F. The subset
G’ of K,(F) defined by S’ is called dual to G. We note that G’ can be
obtained from G by replacing the fixed elements by the free elements and
vice versa. If S is such a set that both of the induced subsets G and G’
are (Lie) subgroups of K ,(F), then we call G to be a regular subgroup of
K, (F). The regular subgroups are called cellsalso. Note that G is a regular
subgroup of K,(F) if and only if G’ is a regular subgroup of K,(F).
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2. Main results

Let M, = {1,---,n} and let p be a relation in M, such that jpi implies
J > t. The dual relation p’ in M, is defined by jp'i if and only if j > ¢ and
(j,2) € p. For given p we join the set § = {(j,7) : ipj}. S induces a subset
G of K,(F) and its dual G'.

Proposition 2.1. The relation p corresponding to G is transitive if
and only if its dual set G’ is a subgroup of K,(F).

Proof. Note that (j,¢) ¢ p if and only if jp'i which means that a;; = 0.
Now let us assume that p is transitive. Let A'and B be two matrices
of the set corresponding to p’ and AB = C(= [¢p,]). Let (4,7) ¢ p. For

the element ¢;; = > a;kbi; if there exists £ such that a;xbr; # 0, then
k=1

a;x # 0 and by; # 0 and hence jpk and kpi. Since p is transitive, then
Jpi - a contradiction with the assumption that (j,i) ¢ p. Thus, ¢;; = 0
which means that if p is transitive, then the corresponding dual set G' is a
subgroupoid of K,(F).

Let A be a matrix from the set induced by p’ and let B be the inverse
matrix of A. Let a;; = 0, i.e. jp'i. Then we have to show that bi; = 0.
Thus it will follow that if p is transitive, then the corresponding dual set
G' will be a subgroup of K,(F).

As j > i, the Kronecker delta 4;; = 0, i.e. Z a;xbr; = 0. If there

exists k such that a;;bx; # 0, then a;; # 0 and ka # 0. Hence ]pk and
kpt, and since p is transitive, 1t follows that jpi which contradicts to jp's.
Thus, for any & € {1,- n}, aikbkj = 0. Specially, for k = i, smce a,, =1
bi; must be zero.

Conversely let us assume that the dual set G’ is a subgroup of K,(F).
Let jpi and ipk, i.e. let a;; and ax; be non-zero. We choose a matrix A
from the set corresponding to p’, such that ay, = 0 and as; = 0 for any
s such that k¥ < s < j and s # i. Moreover, we assume that a;; # 0 and
ar; # 0. The matrix C = A% = AA belongs to the same set as A, because
this set is a group by the assumption. So, we have :

n

Ckj = Eaksasj = QG4 75 0.

s=1

Since cx; is non-zero, then jpk. Thus p is a transitive relation. ||
As a direct consequence we obtain the following proposition.

Proposition 2.2. The cell G of K,(F) znduced by a relation p is a
subgroup of K,(F) if and only if the dual relatzon p' is transitive.
Now we can prove the following theorem.
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‘ Theorem 2.3. For any n, the number of cells m K n(F) is equal to n!
. and the number of all rela,twns p such that p and p' are transztzve s equal
- to n!, too. v

Proof. From to the propos1t10ns 2.1 and 2.2 it follows that for any n
the number of the cells in K(FY) is equal to the number of the relations p
such that p and p’ are transitive. So, it is sufficient to show that there exists
a bijection between the set of relations p such that p and p’ are transitive
and the set S, of all permutations 7 on M, = {1
, Let 7 € Sp.. We define arelation p € M, by ipj lf’L > ] and 7(¢) < 7(j).
- Then p'is deﬁned by ip*j if i> 7 and 1(¢) > 7(5). It can be verified easily
" ‘that p and p’ are transitive. Conversely, let.p be a relation in M, such that -

" p and p', defined as. above, are transitive. By induction of » we can show

" that there exists (umque) permutatlon 7 such that tp] if and only if i 1>
3and 7(4) < 7(4). , ,
_~ 'Let pbe'a relation on Mn+1 such that p and p’ are trans1t1ve Then '
the restrictions §-and: plofp and ' on the set M, are also transitive and
" mutually, dual. So there. exists (yniqye) permutation 7,, which induces the
relations p-and p'. Forany i € M, only oneof the possibilities (n+ 1)pi and.
(n + 1)p'i*is true, and siace p and o’ are transmve, ‘thenthe’ permutation '
T, can be prolonged (umque]y2 fo-a permuta,tlon Trg1s: Mnﬂ — Mn+l
~ which has the requlred prop,ertles SO the conmdered mappmg T pisa
‘bijection. - || -

Note that if 7 py deﬁned as in the proof of the theorem 2.3, then:
 for the dual permutation r‘, defined by Ty =n + L= i, 7" is true.

The set of n! relat1ons p such ‘that" p' 4nd. ‘p' are trans1t1ve, can be
parameterlzed as follows. Let the nnmber:of eiements of. the set

{CI) S!ZEMn,. fpl'}

be i; for 2 < j<n Since 0 < zJ <ji-1, then there ate exactly n! such
sequences (zl, 9, 1) (11 = 0) and for any two different relations we have
different sequences. Therefore every such sequence cofresponds to unique
relation p. Also, it holds for the cells. So, we have proven the following
theorem. ' o ‘ I

Theorem 2.4. For any sequence (i1,42," *,1,), 0<i;<j—1 for
1 < j < n, there exists unique relation p on M, such that p and p' are
transitive, and j is in relation p with i; elements of M,, (i.e. there exists
unique cell such that in the j-th column of its matrices there are exactly i;
elements equal to zero (1 < j < n)). ||

The cell, whose matrices in the j-th column have exactly i; free el-
ements (1 < j < n), is denoted by Cji,...,. As a consequence of the
Theorem 2.4 we obtain the following corollary.

Corollary 2.5. Let p and p' be transitive relations on M,,. Then for
any t € {0,1,---,n} there exist t elements iy,---,i; € M, unique up to
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permutation, such that by prolonging the relation p by (n+1)piy, - - -, (n+1)pi,
again we obtain transitive relations p and p' on M,,,. Also, any cell of
n X n matrices can be prolonged to a cell of (n + 1) x (n + 1) matrices by
adding a new column with given number of fized zeros in unique way.

By the matrix mapping (4,7) — (n+ 1 — j,n+ 1 — i) every cell maps
into cell. Indeed, if p and p' are transitive relations on the set M,,, then
their inverse relations p~! and p’~! defined by

ip ™l = dpj and jp'li = ipy,

also are transitive. Hence we obtain the following corollary.

Corollary 2.6. Any cell of n X n matrices can be prolonged to a cell
of (n+ 1) x (n 4 1) matrices by adding a new row with given number of
fized zeros in unique way.

Note that the dimension of a cell as a Lie group, i.e. the number of
the free elements, is equal to the number of all pairs (i,7) such that ip';.

3. Graph over the regular subgroups G, (F)

In the set G, (F') of all cells, t.e. regular subgroups, we define a relation
7 > 7 such that Cy > Cy if Cy can be obtained from by replacing one
free element by fixed zero. Note that dimC, ~dimC5y = 1 and this relation
can be extended up to transitive relation. Then, we prove the following
proposition.

Proposition 3.1. For any cell C there ezist ezactly n — 1 cells "
such that C > C' or C' > C. More precisely :
(i)  if dimC = n(n — 1)/2, then there exist n — 1 cells C' such that
c>c,
(it)  if dimC = 0, then there ezist n — 1 cells C' such that C' > C,
(i) if 0 < dimC < n(n—1)/2, then there exist cells C' and C" such
that C" > C > C". The number of such cells C' and C" together is n — 1.

Proof. One can verify that C > C’ or C' > C if and only if the
corresponding permutations r and 7' are such that '(1)r'(2)---7'(n) is
obtained from 7(1)7(2)--- 7(n) by a transposition of two neighbor elements
7(¢)and 7(i+1). So, we get the first part of the proposition. The statements
in (i) and (ii) are trivial. The statement in (iii) is a consequence of the
following argument. If 7(1)r(2)---r(n) is a permutation on M,, different
from 12---n and n(n — 1)-- -1, then there exists at least one number pE
{1,2,---,n — 1} such that 7(p) < 7(p + 1) and there exists at least one
number ¢ € {1,2,---,n — 1} such that r(¢) > (¢ + 1). i

. Now we give some examples of regular subgroups and the correspond- -
ing relation ” > ” for n = 2,3,4. The free elements are denoted by *.
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Ezample 1. For n = 2, there are two regular subgroups

COI'—— [é ;]’ 000: [él) ?]

and the relation > is given by

Co1
]
Coo

Ezample 2. For n = 3, the regular subgroups are the following

[1
Co12 = |0
1 0
1
Coo2 = |0
L 0
1
Co11 = |0
1 0

the relation > is given by

* k] 1 0 07
1 %1, " Cooo=10 1 01},
0 1] 10 0 1]
0 ] 1 x 0]
1 = , COlO ={0 1 0 ,
0 1] 0 0 1]
* %] [1 0 0]
1 0 s COOl =10 1 = H
0 1] t0 0 1]
C012
v N
C002 COll
| |
Coo1 Co1o
N N4
C'000

Ezample 3. For n = 4, the regular subgroups are the following

C'0123 =

OO O =
OO = *

?

O = ¥ ¥
- % % ¥

COOOO =

OO O

OO = O

SO O

0
0
0
1
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1 0 0 =] [1 * % 0]
010 01 0
C'0003 = 0 0 1 : ’ COI?O = 0 0 ; ol
10 0 0 1] 10 0 0 1]
1 0 * 0] [1 % 0 %]
0 .1 0 1 0 0
Coo21 = 0. 0 ;3 ’ Cor02 = 0 0 1 x 3
10 0 0 1 - L0 0 0 1]
the relation > is given by
Com\
T

CM?J CMB' Cmn
Vaa s
CMIJ C0103 Co‘l?. sz C0121
XN TN
Cm Cwu Cowz le COlll C0120
NV
Cm COlOl qmll Cmo COllO

Nl
C0001 CM!O C0100
V4

Cwo
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3A HEKOU KAPAKTEPVCTMUYHMU IIOJATI'PYIINA HA
IF'PYIIATA O TOPHOTPUATOJIHN MATPUIIN

C. Kepa u K. TpenueBckn

Pezume

Bo Tpymor e ne¢urupaHa Kiaca oI DOArpynu Ha JlueBara rpymna
01 FOPHOTPHATONHA N X N MATPUIM CO eIWHUIM IO OUjaroHaJaTa,
HapedeHM peryiaapHHE moarpymu. Ce ImokaxyBa znexa O6pojoT Ha TaKBU-
Te NOArPYyNH e n! U ce BOBeAyBa paJjamuja > BO MHOXXECTBOTO Ha OBHeE

HOArpyIHN.
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