Математички Билтен 20 (XX) 1996 (23-32) Скопје, Македонија

EQUIVALENCE OF LEBESGUE -STIELTJES MEASURES GENERATED WITH DISTRIBUTION FUNCTION

Pažanin Ratomir

Abstract

This paper discusses the equivalence of Lebesgue – Stieltjes measures μ_F and μ_H , generated with probability distribution functions F and $H=F\circ\varphi$ of random variables X and $Y=\varphi^{-1}\circ X$. It is proved that measures μ_F and μ_H are equalvalent in the following sense:

$$\mu_H(B) = 0 \Leftrightarrow \mu_F(B) = 0$$

for every μ_H (i.e. μ_F) negliable set B from σ -algebra $\mathcal B$ on $\mathbf R$, if every strictly increasing and continuous function $\varphi\colon\mathbf R\to\mathbf R$ satisfies condition

$$\mu_F(B) = 0 \Rightarrow \mu_F(\varphi(B)) = \mu_F(\varphi^{-1}(B)) = 0$$

for every μ_F negliable set $B \in \mathcal{B}$.

It is shown that conditions which the function $\varphi \colon \mathbf{R} \to \mathbf{R}$ must satisfy for equivalence of measures μ_F and μ_H , $H = F \circ \varphi$ are much simplier if the distribution function F, which generates L - S measure μ_F , is only absolutely continuous, or singular, or discrete.

Finally, a singular probability distribution is constructed and a function $\varphi(x) \not\equiv x$ for which the singular measures μ_F and μ_H , $H = F \circ \varphi$, are equivalent.

Let F be the probability distribution function of the random variable X, defined by:

$$F(x) = P(X < x), \quad x \in \mathbb{R}.$$

Function defined in a such way is increasing left-continuous and satisfies conditions:

$$\lim_{x\to\infty}\,F(x)=0\qquad\text{and}\ \lim_{x\to\infty}\,F(x)=1\,.$$

If $\varphi \colon \mathbf{R} \to \mathbf{R}$ is a strictly continuous function such that there exists composition $F \circ \varphi$ then $H = F \circ \varphi$ is distribution function of the random variable $Y = \varphi^{-1}X$, because:

$$H(y) = P(Y < y) = P(\varphi^{-1}(X) < y) = P(X < \varphi(y)) = F(\varphi(y)), \quad \forall y \in \mathbb{R}.$$

Let μ_F and μ_H Lebesgue – Stieltjes measures generated on the σ -algebra of Borel sets on \mathbb{R} by distribution functions F and H respectively, in a way described in [2].

Definiton 1. For measures μ_F and μ_H defined on the σ -algebra \mathcal{B} , it is said that they are equivalent $(\mu_F \sim \mu_H)$ if

$$\mu_F(B) = 0 \Leftrightarrow \mu_H(B) = 0 \tag{1}$$

for every μ_H as well as for every μ_H negliable set $B \in \mathcal{B}$.

If relation (1) is valid only in one direction, for example if

$$\mu_F(B) = 0 \Rightarrow \mu_H(B) = 0, \quad \in \mathcal{B}, \tag{2}$$

then it is valid that L-S measure μ_H is absolutely continuous with respect to measure μ_F and is written $\mu_H \ll \mu_F$.

The fact that the relation between L-S measures μ_F and μ_H , $H=F\circ\varphi$ really depends on type and properties of continuous and strictly increasing function $\varphi\colon\mathbf{R}\to\mathbf{R}$, will be illustrated on some simple examples.

Example 1. Let $F \colon \mathbf{R} \to [0, 1]$ be distribution function of continuous random variable with $\mathbf{R}_x = [a, b]$ and $\varphi \colon [a, b] \to [a, b]$ continuous, strictly increasing function that has derivative equal \emptyset almost everywhere, so called singular function. Then function F is absolutely continuous with respect to Lebesgue (L) measure on \mathbf{R} . On the other side, function $H = F \circ \varphi$ is singular, so it generates singular L - S measure μ_H with respect to L-measure. Thus, L - S measures μ_F , μ_H in accordance with the definition, are not comparable at all.

Example 2. If

$$F(x) = \begin{cases} 0, & x \le 0 \\ \frac{1}{2}x, & 0 \le x \le 1 \\ \frac{1}{2}, & 1 \le x \le 2 \\ 1 - \frac{1}{x}, & x > 2 \end{cases}$$

and $\varphi(x)=x^3-3x^2+3x$, $x\in\mathbb{R}$, then measures μ_F and μ_H , $H=F\circ\varphi$ are equivalent. If $\varphi(x)=x^3$, $x\in\mathbb{R}$ then μ_F is absolutely continuous with

respect to L-S measure μ_H , generated with distribution function:

$$H(x) = (F \circ arphi)(x) = \left\{ egin{array}{ll} 0\,, & x \leq 0 \ rac{1}{2}\,x^3\,, & 0 \leq x \leq 1 \ rac{1}{2}\,, & 1 \leq x \leq \sqrt[3]{2} \ 1 - rac{1}{x^3}\,, & x > \sqrt[3]{2}\,. \end{array}
ight.$$

Because, every μ_H negliable set $B \in \mathcal{B}$ and μ_F negliable too

$$\mu_H(B) = 0 \rightarrow \mu_F(B) = 0, \in \mathcal{B}.$$

But reverse is not valid, because if B = <1, 2 >then

$$\mu_H(B) = 0$$
 and $\mu_H(B) = H(2) - H(1) = 1 - \frac{1}{8} - \frac{1}{2} = \frac{3}{8}$.

In order to make the statament of the main theorem more concise, we shall slightly change the definition of so called N-function given by Luzin [1].

Definition 2. We say that function $\varphi \colon \mathbb{R} \to \mathbb{R}$ has N-property with respect to L-S measure μ_F if $\mu_F(\varphi(B)) = 0$ for every μ_F negliable set $B \in \mathcal{B}$.

Theorem 1. Let F be distribution function of random variable X with $\mathbf{R}_x = \langle a, b \rangle \subseteq \mathbf{R}$ and $\varphi: \langle a, b \rangle \rightarrow \langle a, b \rangle$ strictly increasing and continuous function, and that exist composition $H = F \circ \varphi$. L - S measures μ_F and μ_H generated with functions F, H respectively, are equivalent if and only if function φ and φ^{-1} have N-property with respect to measure μ_F .

Proof. Since

$$\mu_H(B) = \int_B dH = \int_B d(F \circ \varphi) = \mu_F(\varphi(B))$$
 (3)

then from the supposition that φ and φ^{-1} have N-property with respect to measure μ_F , we obtain:

$$\mu_F(B) = 0 \to \mu_F(\varphi(B)) = 0 \to \mu_H(B) = 0,$$

$$\mu_H(B) = 0 \to \mu_F(\varphi(B)) = 0 \to \mu_F(\varphi^{-1}(\varphi(B))) = 0 \to \mu_F(B) = 0.$$

That proves the equivalence of L-S measures μ_F and μ_H , $H=F\circ\varphi$. Also, from the supposition on equivalence of measures μ_F and μ_H , equality (3), for every μ_F negliable set $B\in\mathcal{B}$ follow relations:

$$\mu_F(B) = 0 \to \mu_H(B) = 0 \to \mu_F(\varphi(B)) = 0,$$

$$\mu_F(B) = 0 \to \mu_F(\varphi(\varphi^{-1}(B))) = 0 \to \mu_F(\varphi^{-1}(B)) = 0 \to \mu_F(\varphi^{-1}(B)) = 0$$

which prove that function φ and φ^{-1} : $\langle a, b \rangle \rightarrow \langle a, b \rangle$ have N-property with respect to L-S measure μ_F .

With that theorem is completly proved.

Because, monotone function $F: \mathbf{R} \to \mathbf{R}$ can be up to the additive constant represented as a sum of a step function F_1 , an absolutely continuous function F_2 and a singular function F_3 , every L-S measure μ_F has unique representation as a sum:

$$\mu_F = \mu_{F_1} + \mu_{F_2} + \mu_{F_3}$$

where μ_{F_1} is a discrete L-S measure generated with discrete function F_1 , μ_{F_2} an absolutely continuous measure generated with absolutely continuous function F_2 and μ_{F_3} a singular L-S measure generated with singular function F_3

Theorem 1. gives necessary and sufficient conditions for the equivalence of L-S measures μ_F and $\mu_{F\circ\varphi}$ in general case. But, if measure μ_F consists only of one component, i.e. is only discrete or absolutely continuous or singular on the whole \mathbf{R} , then the given conditions for the function φ can be enormally simplified, as it will be shown in the further consideration.

Corollary 1. Let μ_G L-S mesure on \mathbf{R} generated with distribution function of continuous random variable X with $\mathbf{R}_x = \langle a, b \rangle \subseteq \mathbf{R}$. Measures μ_F and μ_H , $H = F \circ \varphi$ are equivalent if strictly increasing and continuous function $\varphi : \langle a, b \rangle \rightarrow \langle a, b \rangle$ satisfies conditions:

(a) $0 < \varphi'(x) < \infty$ almost all on $\mathbb{R} \setminus C$ with respect to Lebesque μ on \mathbb{R}

$$\varphi(B) \subseteq C \Leftrightarrow B \subseteq C$$

where C is union of the intervals $< \alpha_i, \beta_i >$ on which distribution function is constant.

Proof. Distribution function of continuous random variable is absolutely continuous on \mathbf{R} , so that corresponding L-S measure μ_F is also absolutely continuous with respect to Lebesgue measure on \mathbf{R} . Continuous function with satisfies condition (a) is absolutely continuous and its inverse is an absolutely continuous function. Thus, $F \circ \varphi = H$ is absolutely continuous function wich generates also absolutely continuous measure μ_H with respect to L measure.

To prove the equivalence of these two measures, according to Theorem 1., we must show that functions φ and φ^{-1} have N-property with respect to μ_F measure. For every μ_F negliable set $B \subseteq \mathbb{R} \setminus C$ the following holds:

$$\begin{cases} \mu_F(B) = 0 \to \mu(B) = 0 \to \mu(\varphi(B)) = 0 \to \mu_F(\varphi(B)) = 0, \\ \mu_F(B) = 0 \to \mu(B) = 0 \to \mu(\varphi^{-1}(B)) = 0 \to \mu_F(\varphi^{-1}(B)) = 0, \end{cases}$$
(4)

because absolutely continuous functions φ and φ^{-1} have N-property with respect to L measure μ and measures μ_F and μ are equivalent on $\mathbb{R}\backslash C$.

Because of condition (b) we have:

$$\varphi(B) \subseteq <\alpha_i, \, \beta_i> \text{ and } \varphi^{-1}(B)\subset <\alpha_i, \, \beta_i>$$

so

$$\mu_F(\varphi(B)) = 0$$
 and $\mu_F(\varphi(B)) = 0$

which together with (4) shows N-property of function φ and φ^{-1} with respect to measure μ_F , and it is, according to Theorem 1., necessary and sufficient for equivalence of measures μ_F amd μ_H , $H = F \circ \varphi$.

Remark 1. When range of the continuous random variable is $\mathbf{R}_x = \mathbf{R}$, its distribution function is strictly increasing and absolutely continuous on \mathbf{R} , so $C = \emptyset$. In such cases, measures μ_F and $\mu_H = F \circ \varphi$ are equivalent if continuous function φ almost everywhere on \mathbf{R} has positive derivative.

Remark 2. Assumption of the corrolary would not have been correct if instead of condition (a) we would suppose that strictly increasing function φ was absolutely continuous. Namely, the inverse function of the strictly increasing and absolutely continuous function need not be absolutely continuous, what will be illustrated on example 3., so as a monotone function, it need not even have N-property which is a necessary condition for the equivalence of the L-S measures μ_F and $\mu_{F\circ\varphi}$.

Example 3. Let us take a nowhere dense closed set B on [0,1] of Lebesque measure $1-\varepsilon$. Such sets for any $\varepsilon>0$, by [1]. Nowhere dense set means that for any $a,b\in[0,1],\ a< b$, exist α,β , and $a\leq\alpha<\beta\leq b$, such that $<\alpha,\beta>$ has no points in B. B is measurable as a closed set. Let $f=\zeta_A$ be characteristic function of set $A=[0,1]\setminus B$. Because f is a summable function, a new function can be defined with:

$$\varphi(x) = \int_0^x f(t) dt, \quad x \in [0, 1].$$
 (5)

Function φ defined in such a way is absolutely continuous as an integral, and its derivates is almost everywhere equal to f. Thus, $\varphi'(x) = 0$ on set B of positive measure $1 - \varepsilon$. Besides, φ is strictly increasing, because for any two points $a.\dot{b} \in [0, 1]$, a < b we have

$$\varphi(b) - \varphi(a) \ge \varphi(\beta) - \varphi(\alpha) = \beta - \alpha - 0$$
.

Thus, function φ given with (5) is strictly increasing absolutely continuous on [0, 1] and has inverse function. But, φ^{-1} is not absolutely continuous because $\varphi'(x) = 0$ almost everywhere on set B of positive measure $1 - \varepsilon$, $\varepsilon > 0$.

Corollary 2. Let random variable X on $\mathbb{R}_x = \langle a, b \rangle \subset \mathbb{R}$ is given with singular distribution function F(x) = P(X < x), and let

$$E\{x \in \langle a, b \rangle \mid F'(x) = 0\}.$$

L-S measures μ_F and μ_H generated respectively with functions F and $H=F\circ\varphi$, are equivalent if strictly increasing and continuous function

$$\varphi$$
: $\langle a, b \rangle \rightarrow \langle a, b \rangle$

is such that

(a) has finite derivative on E, and on set $\langle a, b \rangle \setminus E$ either has positive derivative or its derivative doesn't exist;

$$\varphi(x) \in E \Leftrightarrow x \in E$$

Proof. L-S measure generated with singular function $F: \langle a, b \rangle \rightarrow [0, 1]$ is singular with respect to L measure on $\langle a, b \rangle$ and it means that $\mu_F(E) = 0$ and $\mu[\langle a, b \rangle \setminus E] = 0$. From conditions (a) and (b) we get:

$$H'(x) = [F(\varphi(x))]' = F'(\varphi(x)) \cdot \varphi'(x) \quad \forall x \in E,$$

and

$$H'(x) > 0$$
 or $H'(x)$ doesen't exists on $\langle a, b \rangle \setminus E$.

From here it follows that almost everywhere on $\langle a,b \rangle$ is H'(x)=0, so that corresponding L-S measure μ_H is singular with respect to L measure on $\mathbf R$ and $\mu_H(E)=0$. So, both L-S measures are singular with respect to L measure on $\langle a,b \rangle$ and are concentrated on the same set of measure 0, which means that they are equivalent in the sense of Definition 1.

Now we shall construct singular function F and show that there exist functions $\varphi(x) \not\equiv x$ such measures μ_F and $\mu_{F \circ \varphi}$ are equivalent.

Example 4. Construction of the continuous, strictly increasing function $F: [0, 1] \rightarrow [0, 1]$ that has derivative equal 0 almost everywhere on I = [0, 1].

Let us define input sequence of continuous and strictly increasing functions with derivatives positive almost everywhere on I.

Let $F_0(x) = x^2$, $x \in I$.

For $n \in \mathbb{N}$ let us define $F_n: I \to I$ in this way:

$$F_{n}\left(\frac{k}{2^{n-1}}\right) = F_{n-1}\left(\frac{k}{2^{n-1}}\right), \quad k = \overline{0, 2^{n-1}}$$

$$F_{n}\left(\frac{2k+1}{2^{n}}\right) = \frac{1}{4}F_{n-1}\left(\frac{k}{2^{n-1}}\right) + \frac{3}{4}F_{n-1}\left(\frac{k+1}{2^{n-1}}\right), \quad k = \overline{0, 2^{n-1}}.$$
(6)

The endpoints of intervals $\left\langle \frac{k}{2^{n-1}}, \frac{2k+1}{2^n} \right\rangle$ i.e. $\left\langle \frac{2k+1}{2^n}, \frac{k+1}{2^{n-1}} \right\rangle$ are connected with parabolas that have vertices in points

$$\left(\frac{k}{2^{n-1}},\,F_n\left(\frac{k}{2^{n-1}}\right)\right)$$
 and in points $\left(\frac{2k+1}{2^n}\,,F_n\left(\frac{2k+1}{2^n}\,,
ight)\right)$.

It is not difficult to show that a function $F_n: I \to I$ defined in such a way can be written like this:

$$F_n(x) = \begin{cases} 3x^2 & 0 \le x < \frac{1}{n} \\ \frac{1}{4^n} \sum_{j=0}^{k-1} 3^{n-r_j} + 3^{n-r_k} \left(x - \frac{k}{2^n}\right)^2, & \frac{k}{2^n} \le x < \frac{k+1}{2^n} \end{cases}$$

where $k = \overline{1, 2^{n-1}}$ and r_j is the number of is in the binary representation of number j = 0, 1, 2, ... (for example $r_0 = 0, r_1 =$ $r_{2^m} = 1$ $r_{2^m+1} = 2, \ldots, m \in \mathbb{N}$).

Defined function $F_n: I \to I$ is obviously continuous and strictly increasing and has positive derivative in all points of the interval < 0, 1 > except in the points of set

$$E_0 = \bigcup_{n=1}^{\infty} \left\{ \frac{k}{2^n}, \quad k = \overline{0, 2^n} \right\}$$

in wich derivarive doesn't exist. Because

$$0 \leq F_n(x) \leq F_{n+1}(x) \leq 1 \,, \quad \forall x \in I \quad \text{and} \quad N \in \mathbb{N} \,,$$

it follows that sequence $F_0, F_1, \ldots, F_n, \ldots$ converges to some increasing function $F: I \to I$. We shall prove that F is strictly increasing continuous function and that F'(x) = 0 almost everywhere on I.

Let x be any point from interval < 0, 1 >. Let us take the sequence of intervals $<\alpha_n, \beta_n>, n \in \mathbb{N}$ such that

$$<\alpha_n,\, \beta_n>\subset <\alpha_{n-1},\, \beta_{n-1}>\quad {\rm and}\quad x\in <\alpha_n,\, \beta_n>,\quad {\rm for\ any}\quad n\in \mathbb{N}\,,$$

where $\alpha_n = \frac{k}{2^n}$, $\beta_n = \frac{k+1}{2^n}$, $k \in \{0, 1, 2, \dots, 2^n - 1\}$. From equality (6) it follows that

$$F_n(\beta_n) - F_n(\alpha_n) = F_n\left(\frac{k+1}{2^n}\right) - F_n\left(\frac{k}{2^n}\right) = \frac{3^{n-r_k}}{4^n}.$$

Because

$$F_n(\alpha_n) = F_n\left(\frac{k}{2^n}\right) = F\left(\frac{k}{2^n}\right) = F(\alpha_n)$$
 and $F_n(\beta_n) = F(\beta_n)$

follows $F(\beta_n) - F(\alpha_n) = \frac{3^{n-r_k}}{4^n}$. From here it follows that $F(\beta_n) > F(\alpha_n)$ and

$$\lim_{n\to infty} \left[F(\beta_n) - F(\alpha_n) \right] = \lim_{n\to\infty} \frac{3^{n-r_k}}{4^n} = 0,$$

what shows that F is continuous and strictly increasing function. Derivative $F'(x), x \in \langle \alpha_n, \beta_n \rangle$, if it exists, is equal to limit of

$$\frac{F(\beta_n) - F(\alpha_n)}{1/2^n} = \frac{3^{n-r_k}}{2^n}, \quad \text{when} \quad n \to \infty.$$

This limit is either infinity or is not defined or is equal 0. According to Lebesgue theorem [4], monotone continuous function has finite derivative almost everywhere, so our limit function $F: I \to I$, as a strictly increasing and continuous function, has derivative 0 almost everywhere on I. Thus, limit function of the given convergent monotone sequence of functions F_0, F_1, \ldots is singular.

Example of continuous strictly increasing function $\varphi: I \to I$ which maps set E on E, and which has finite derivative on set $E = \{x \in I \mid F'(x) = 0\}$ and on set $I \setminus E$ has positive derivative, it exists, can be given in this way:

$$\varphi(x) = \begin{cases} \frac{1}{4} x, & 0 \le x < \frac{1}{4} \\ \frac{3}{4} x - \frac{1}{8}, & \frac{1}{4} \le x < \frac{1}{2} \\ \frac{3}{2} x - \frac{1}{2}, & \frac{1}{2} \le x < 1 \end{cases}$$

Given function $\varphi: I \to I$ is obviously continuous, strictly increasing and $0 < \varphi'(x) < \infty$ for all $x \in I \setminus \{0, \frac{1}{4}, \frac{1}{2}, 1\}$.

Because $\left\{0,\frac{1}{4},\frac{1}{2},1\right\}\subset E_0\subseteq I\setminus E$, strictly increasing and compositions tion $F \circ \varphi = H$, his derivative equal 0 on set E, and on set $I \setminus E$ either has positive derivative or its derivative doesn't exist. Function $H = F \circ \varphi : I \to I$ is then singular and

$${x \in I \mid H'(x) = 0} = {x \in I \mid F'(x) = 0} = E.$$

From here follows that μ_F , μ_H , $H = F \circ \varphi$, are L - S measures on the same set $I \setminus E$ of the Lebesgue measure 0 and that

$$\mu_F(E) = \mu_H(E) = 0$$

what means that singular L-S measures μ_F and μ_H are equivalent.

Corrolary 3. Let F(x), $x \in \mathbb{R}$ be a distribution function of discrete random variable with $\mathbb{R}_x = \{x_1, x_2, \ldots\}$. L - S measure μ_F and μ_H , generated respectively with function F and $H = F \circ \varphi$, are equivalent in terms of definition 1. if increasing and continuous function $\varphi \colon \mathbb{R} \to \mathbb{R}$ bijectively maps set \mathbb{R}_x on \mathbb{R}_x . Equivalent discrete measures μ_F and μ_H , $H = F \circ \varphi$ are equal.

Proof. Distribution function of discrete random variable X is step function with jumps in points of set \mathbf{R}_x . Because increasing and continuous function $\varphi \colon \mathbf{R} \to \mathbf{R}$ bijectively maps set $\mathbf{R}_x \subset \mathbf{R}$ on \mathbf{R}_x then step function $H = F \circ \varphi$ with jumps in points $x_k \in \mathbf{R}_x$, $k = 1, 2, \ldots$ Thus functions F and H generate discrete L - S measures μ_F and μ_H on σ -algebra B and then $\mu_F(B_1) = \mu_H(B_1) = 0$ for every set $B_1 \in \mathcal{B}$ which has not any element from \mathbf{R}_x , and $\mu_F(B_2) > 0$, $\mu_H(B_2) > 0$ for any $B_2 \in \mathcal{B}$ which contains at least element $x_k \in \mathbf{R}_x$. So μ_F and μ_H , $H = F \circ \varphi$ are equivalent measures.

Also, step functions F and H have the same jump in the point $x_k \in \mathbb{R}_x$, k = 1, 2, ... so that for $B_2 \in \mathcal{B}$ is

$$\begin{split} \mu_H(B_2) &= \sum_{x_k \in B_2} \left[H(x_k + 0) - H(x_k) \right] = \\ &= \sum_{x_k \in B_2} \left[(F \circ \varphi)(x_k + 0) - (F \circ \varphi)(x_k) \right] = \\ &= \sum_{x_k \in B_2} \left[F(x_k + 0) - F(x_k) \right] = \mu_F(B_2) \,. \end{split}$$

From here it follows equality of the equivalent discrete L-S measures μ_F and μ_H , $H=F\circ\varphi$.

References

- [1] Hevit, E. and Stromberg, K.: Real and Apstract Analysis, Springer, Berlin 1965.
- [2] Колмогоров, А. Н. и Фомин, С. В.: Елементиы теории функций и функционального анализа, 2. изд. Наука, Москва 1968.
- [3] Натансон, И. П.: Теория функций вещественной переменной, 3. изд. Издат. Наука, Москва 1974.
- [4] Reis, F. et Sz-Nagy, B.: Leçons d'analyse fontionell Acad. Sci. de Hongrie, Budapest 1952.
- [5] Stone, M. N.: Linear Transformations in Hilbert Space, American Matematical society, New York 1932.

ЕКВИВАЛЕНТНОСТА НА ЛЕБЕГ-СТИЛТЈЕС-ОВИ МЕРИ ГЕНЕРИРАНИ ОД ФУНКЦИИТЕ НА РАЗЛЕЛБАТА

Пажанин Ратомир

Резиме

Во трудов се разгледува еквивалентноста на Лебег-Стилтјесови мери μ_F и μ_H , генерирани од функции на распределба на веројатностите F и $H=F\circ\varphi$ на случајните променливи X и $Y=\varphi^{-1}\circ X$. Се покажува дека мерите μF и μ_H се еквивалентни во следната смисла

$$\mu_H(B)=0 \Leftrightarrow \mu_F(B)=0.$$

Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Sveučilišta u Splitu