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Abstract

This paper discusses the equivalence of Lebesgue — Stieltjes
measures pr and pjp, generated with probability distribution func-
tions F and H = Fop of random variables X and Y = ¢~ 1 0 X. It
is proved that measures ur and pg are equaivalent in the following
sense:

ka(B)=0% pup(B)=10
for every pg (i.e. pr) negliable set B from o-algebra B on R, if
every strictly increasing and continuous function ¢: R — R satisfies
condition
ur(B)=0=> pr(o(B)) = pr (o' (B)) =0
for every pp negliable set B € B.

It is shown that conditions which the function ¢: R — R
must satisfy for equivalence of measures pur and pg, H = Fop are
much simplier if the distribution function F, which generates L — S
measure uF, is only absolutely continuous, or singular, or discrete.

Finally, a singular probability distribution is constructed and
a function ¢(z) # z for which the singular measures pr and pg,
H = F o ¢, are equivalent.

Let F be the probability distribution function of the random variable

X, defined by:

F(z)=P(X <z), z€R.

Function defined in a such way is increasing left—continuous and satisfies

conditions:

lim F(z)=0 and lim F(z)=1.
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If : R - R is a strictly continuous function such that there exists
composition F o ¢ then H = F o ¢ is distribution function of the random
variable Y = ¢~' X, because:

H(y)=P(Y <y)=P(¢p(X) <y)=P(X <¢(y))=F(e(y)), ¥y€eR.

Let urp and ppy Lebesgue — Stieltjes measures generated on the
o-algebra of Borel sets on R by distribution functions F' and H respec-
tively, in a way described in [2].

Definiton 1. For measures pr and py defined on the o—algebra B, it
is said that they are equivalent (up ~ py) if

pr(B) =0 < pu(B)=0 (1)

for every py as well as for every py negliable set B € B.
If relation (1) is valid only in one direction, for example if

pr(B)=0 = ug(B)=0, €B8, (2)

then it is valid that L — S measure py is absolutely continuous with respect
to measure up and is written py < pp.

The fact that the relation between L — § measures pp and
ug, H = F o ¢ really depends on type and properties of continuous and
strictly increasing function ¢: R — R, will be ilustrated on some simple
examples.

Example 1. Let F: R — [0, 1] be distribution function of continuous
random variable with R, = [a, b] and ¢: [a, b] — [a, b] continuous, strictly
increasing function that has derivative equal (} almost everywhere, so called
singular function. Then function F is absolutely continuous with respect
to Lebesgue (L) measure on R. On the other side, function H = F o ¢
is singular, so it generates singular L — § measure py with respect to
L-measure. Thus, L—S measures g, pgy in accordance with the definition,
are not comparable at all.

Example 2. If

0, <0
%m, 0<z<1

F(z) =
(=) 5, 1<2<2
1—%, z>2

and p(z) = 2% — 32? + 3z, z € R, then measures pp and pg, H = Foyp
are equivalent. If p(z) = 2®, ¢ € R then pr is absolutely continuous with
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respect to L — S measure py, generated with distribution function:

0, z<0
%x:”, 0<z<1

H(B:FO )=
@=@e@={ "y
1—;15, w>\3/§.

Because, every pgy negliable set B € B and pp negliable too
p(B) =0 pp(B) =0, €B.
But reverse is not valid, because if B =< 1, 2 > then
pr(B)=0 and py(B)= H@)- H()=1-3 - ==.

In order to make the statament of the main theorem more concise, we shall
slightly change the definition of so called N—function given by Luzin [1].

Definition 2. We say that function ¢: R— R has N —property with
respect to L — S measure pp if ,up(cp(B)) = 0 for every ur negliable set
B e B.

Theorem 1. Let F be distribution function of random variable X
with R; =< a,b >C R and ¢:< a,b >—< a, b > strictly increasing and
continuous function, and that exist composition H = Foyw. L— .5 measures
pr and pg generated with functions F, H respectively, are equivalent if and
only if function ¢ and ¢~ have N -property with respect to measure pp.

Proof. Since

pia(B) = | dH = [ d(F o) = ur(¢(B)) (3)

then from the supposition that ¢ and ¢~! have N—property with respect
to measure yup, we obtain:

pr(B) =0 - pp(p(B)) =0 — pu(B) =0,

pr(B) =0 — pp(p(B)) = 0 — pr(p™" (¢(B))) =0 — pr(B) = 0.

That proves the equivalence of L — § measures pp and pg, H = F o ¢.
Also, from the supposition on equivalence of measures g and pg, equality
(3), for every pp negliable set B € B follow relations:

pr(B)=0— pp(B)=0—pr(p(B)) =0,

pr(B)=0— pr(p(p™(B))) =0 — pr (7' (B)) =0 — pr(p~'(B)) =0
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which prove that function ¢ and p~': < a, b >—< a, b > have N-property
with respect to L — S measure up.
With that theorem is completly proved.

Because, monotone function F: R — R can be up to the additive con-
stant represented as a sum of a step function Fj, an absolutely continuous
function F5 and a singular function Fj, every L — S measure yp has unique
representation as a sum:

KF = pr + pF, + 1F,

where pr, is a discrete L — 5 measure generated with discrete function Fy,
L r, an absolutely continuous measure generated with absolutely continuous
function F3 and pp, a singular L — § measure generated with singular
function F3

Theorem 1. gives necessary and sufficient conditions for the equiva-
lence of L — S measures upr and pipo, in general case. But, if measure pup
consists only of one component, i.e. is only discrete or absolutely continu-
ous or singular on the whole R, then the given conditions for the function ¢
can be enormaly simplified, as it will be shown in the further consideration.

Corollary 1. Let ug L — S mesure on R generated with distribution
function of continuous random variable X withR; =< a, b >C R. Measures
ur and pg, H = F o ¢ are equivalent if strictly increasing and continuous
function ¢: < a, b >—< a, b > satisfies conditions:

(a) 0<¢'(z)<oo almost all on R\C with respect to Lebesque . on R
(®) o(B)CC & BCC

where C' is union of the intervals < a;, §; > on which distribution function
1$ constant.

Proof. Distribution function of continuous random variable is abso-
lutely continuous on R, so that corresponding L — S measure pp is also
absolutely continuous with respect to Lebesgue measure on R. Continuous
function with satisfies condition (a) is absolutely continuous and its inverse
is an absolutely continuous function. Thus, F o = H is absolutely contin-
uous function wich generates also absolutely continuous measure ppy with
respect to L measure.

To prove the equivalince of these two measures, according to Theorem
1., we must show that functions pand ¢~! have N-property with respect
to up measure. For every up negliable set B C R\C the following holds:

pr(B) =0 — u(B) =0 — p(p(B)) = 0 — pr(p(B)) =0, W
pr(B)=0— u(B)=0— p(p™'(B)) =0— pr(p™(B)) =0,
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because absolutely continuous functions ¢ and ¢~ have N-property with
respect to L measure p and measures g and p are equivalent on R\C.
Because of condition (b) we have:

¢(B) C< ai, f; > and ¢~ (B) C< a, Bi >

SO

pr(p(B)) =0 and pp(p(B)) =0

which together with (4) shows N—property of function ¢ and ¢~! with
respect to measure pp, and it is, according to Theorem 1., necessary and
sufficient for equivalence of measures up amd pg, H = F o p.

Remark 1. When range of the continuous random variable is R, =R,
its distribution function is strictly increasing and absolutely continuous on
R, so C = §. In such cases, measures up and ug = F o ¢ are equivalent if
continuous function ¢ almost everywhere on R has positive derivative.

Remark 2. Assumption of the corrolary would not have been correct
if instead of condition (a) we would suppose that strictly increasing function
¢ was absolutely continuous. Namely, the inverse function of the strictly
increasing and absolutely continuous function need not be absolutely con-
tinuous, what will be illustrated on example 3., so as a monotone function,
it need not even have N—property which is a necessary condition for the
equivalence of the L — S measures pr and ppoy.

Example 3. Let us take a nowhere dense closed set B on [0, 1] of
Lebesque measure 1 — ¢. Such sets for any ¢ > 0, by [1]. Nowhere dense
set means that for any a, b € [0, 1], a < b, exist @, 8, and a < a < 3 < b,
such that < «, 8 > has no points in B. B is measurable as a closed set.
Let f = (4 be characteristic function of set A = [0, 1]\ B. Because f is a
summable function, a new function can be defined with:

e() =] fO)dt, =e0,1]. (5)

Function ¢ defined in such a way is absolutely continuous as an integral,
and its derivates is almost everywhere equal to f. Thus, ¢'(z) = 0 on set
B of positive measure 1 — €. Besides, ¢ is strictly increasing, because for

any two points a.b € [0, 1], a < b we have

e(b) — ¢(a) 2 p(B) — p(a) = —a~0.

Thus, function ¢ given with (5) is strictly increasing absolutely continuous
on [0, 1] and has inverse function. But, ¢! is not absolutely continuous
because ¢'(z) = 0 almost everywhere on set B of positive measure 1 — ¢,
e > 0.
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Corollary 2. Let random variable X on R; =< a, b >C R is given
with singular distribution function F(z) = P(X < z), and let

E{z €<a,b> |F'(z)=0}.

L — S measures up and puy generated respectively with functions F and
H = F o ¢, are equivalent if strictly increasing and continuous function

p:<a, b>><a,b>

is such that :
(a) has finite derivative on E, and on set < a,b > \E either has
positive derivative or its derivative doesn’t ezist;

(b) p(z)e EzeE

Proof. L — 5 measure generated with singular function F: < a, b >—
[0, 1] is singular with respect to L measure on < @, b > and it means that
pr(E) =0 and p[< a, b > \E] = 0. From conditions (a) and (b) we get:

H'(z) = [F(p(2))] = F'(p(2)) - ¢'(z) Vze€E,
and
H'(z) >0 or H'(z) doesen’t existson <a,b>\E.

From here it follows that almost everywhere on < a, b > is H'(z) = 0,
so that corresponding L — S measure py is singular with respect to L
measure on R and py(F) = 0. So, both L — § measures are singular with
respect to L measure on < a, b > and are concentrated on the same set of
measure 0, which means that they are equivalent in the sense of Definition
1.

Now we shall construct singular function F and show that there exist
functions ¢(z) # z such measures pp and pipo, are equivalent.

Example 4. Construction of the continuous, strictly increasing func-
tion F: [0, 1] — [0, 1] that has derivative equal 0 almost everywhere on
I =0, 1]. :

Let us define input sequence of continuous and strictly increasing func-
tions with derivatives positive almost everywhere on I.

Let Fo(z)=1z% z €l

For n € N let us define F,,: I — I in this way:

k k —

2k+1 1 k 3 k41 _
F"( 2 )=ZF"‘1(W_—1)+ZF"-1(2—”_—1), k=021,
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The endpoints of intervals <2,,k_1, 2—';?—) i.e. <2—’;',{'—], 5"—,,%) are con-

nected with parabolas that have vertices in points

k k ) . 2k + 1 2k + 1
<2n—1’F" (Qn_l>) and in points (T’Fn( o ,))

It is not difficult to show that a function F,,:I — I defined in such a way
can be written like this:

1
3’ 0<z <~
n
Fo(z) = k-1 2
1 s —r k k k+1
E E 3nTi +3n k (II}—;L') . ?{S(I)< on
=0

where k = 1, 271 and 7; is the number of is in the binary representation of
number j = 0,1,2,... (for example r, = 0, n = 1,
Tom = 1 r2m+1:2,...,m€N).

Defined function F,:I — I is obviously continuous and strictly in-
creasing and has positive derivative in all points of the interval < 0,1 >
except in the points of set

<k
f=U g £=7)

in wich derivarive doesn’ t exist. Because

0< Fo(z) < Fopa(z) <1, Vzel and N €N,

it follows that sequence Fp, Fiy, ..., F,, ... converges to some increasing
function F: I — I. We shall prove that F' is strictly increasing continuous
function and that F'(z) = 0 almost everywhere on I.

Let z be any point from interval < 0, 1 >. Let us take the sequence
of intervals < ay,, 8y, >, n € N such that

< Oy, Pn >C< ap_1, Buc1 > and T €< ay, B >, forany neN,

where a, = &, 8, = &, k€{0,1,2,...,2" ~ 1}.
From equality (6) it follows that

k+1 k 3Tk

Because

Fu(an) = Fy (;) =F (2%) = F(an) and Fu(8,) = F(Bn)
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follows F(B,) — F(an) = 35~
From here it follows that F(ﬂn) > F(a,) and

m  [F(Ba) - F(an)] = lim >~ =0,

n—infty n—oo 47

what shows that F is continuous and strictly increasing function. Derivative
F'(2), z €< ay, Bn >, if it exists, is equal to limit of

F(By) - F(a,) _ 3™
1/27 gn

when n — oo.

This limit is either infinity or is not defined or is equal 0. According
to Lebesgue theorem [4], monotone continuous function has finite deriva-
tive almost everywhere, so our limit function F: I — I, as a stricltly in-
creasing and continuous function, has derivative 0 almost everywhere on 1.
Thus, limit function of the given convergent monotone sequence of functions
Fy, F1, ... is singular.

Example of continuous strictly increasing function ¢:I — I which
maps set F on F, and which has finite derivative on set
E={ze€I|F'(z)=0} and onset I\ F has positive derivative, it exists,
can be given in this way:

1 1
iT, OS.’E<4—
3 11 1
plz) =< 52—5, 5¢<35.
3 11
22—3, gse<l

Given function ¢:I — I is obviously continuous, strictly increasing and
0<¢'(z)<oo forall z€I\{0,%,3,1}.

Because {0, 13 ,1} C Ep C I'\ E, strictly increasing and composi-
tion F o = H, his derivative equal 0 on set F, and on set I \ F either has
positive derivative or its derivative doesn’t exist. Function H = Fop: [ — [
is then singular and

{z€l|H'(z)=0}={zeI|F(z)=0}=E.

From here follows that pr, pg, H = F o g, are L — § measures on
the same set I \ F of the Lebesgue measure 0 and that

ur(E) = pu(E) =0

what means that singular L — S measures pr and ppg are equivalent.
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Corrolary 3. Let F(z), =z € R be a distribution function of discrete
random variable with R, = {z1, 2, ...}. L — 5 measure pp and py,
generated respectively with function F and H = F o ¢, are equivalent in
terms of definition 1. if increasing and continuous function ¢: R — R
bijectively maps set R , on R;. FEquivalent discrete measures pp and py,
H = F o ¢ are equal.

Proof. Distribution function of discrete random variable X is step
function with jumps in points of set R,. Because increasing and continuous
function ¢: R — R bijectively maps set R, C R on R, then step function
H = F o ¢ with jumps in points z; € R, k = 1,2, ... Thus functions F
and H generate discrete L — S measures up and gy on o—algebra B and
then pp(B1) = py(B1) = 0 for every set By € B which has not any element
from R;, and pp(B2) > 0, ug(B2) > 0 for any B; € B which contains at
least element zx € R,. So up and py, H = Foyp are equivalent measures.

Also, step functions F and H have the same jump in the point
zy € R, k=1,2,...50 that for By € B is

pr(Ba) = Y [H(zk+0) = H(ze)] =
xz €Bg
= Z [(Fo@)zk+0)—(Fop)zk)] =
zr €82
= Y [Flzx+0) = F(zi)] = pr(B,).
rx €B,

From here it follows equality of the equivalent discrete L — S measures up
and pg, H=Foop.
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EKBNBAJIEHTHOCTA HA JIEBETI-CTNJITJEC-OBUA
MEPU 'EHEPUPAHMUM Ol $YHKIINNUTE
HA PA3IEJIBATA

Maxagne PaToMmup

PezumMme

Bo tpynoB ce pasrienyBa ekBHBaJeHTHOCTa Ha JleGer—Crtunatjec—
OBY M€PHU jiF U [}, TeHePUPARU Ol QYHKINN Ha pacnpenenda Ha BEPoO-
jarroctute F u H = Foyp Ha ciydajaute npoMersuBu X u Y = o~ loX,
Ce mokaKyBa IIeKa MepuTe uF W jy ce eKBUBAaJeHTHU BO CJIEIHATA
CMHCJIa

u(B) =04 pp(B) =0.
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