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MATHEMATICAL APPLICATIONS OF THE INDUCTION METHOD IN THE THEORY
OF ABSTRACT STATIONARY EQUATIONS

I.V. Kulikov (USSR, Rostov-on-Don)

Abstract. We study abstract systems of stationary inequali-
ties of the following type:

I a,. K (x,) SN, 1<ic<t (1)
1<j<m i3 Tij J L’ ’

where m,t,N; (1 €i <t), ajs (1 si<t, 1<j<m) are the elements

of the set Z+ - the set of natural numbers.

In this article we formulate and prove theorems about the

solutions of an abstract stationary equation K_(x)=r, réz,, and
observe [7] estimates for the number of solutions of (1).

Let A® be the set of all functions n(x) = n, n: Z, = I,
which satisfies the condition n(x) < x, when X€Z,. For every
function neA® define its index K (x) = Rn’ f(n:»Z+ =~ Z, by the
equalities

> . L

Kn(x): = mln{z:zez+, n( )(x)eAn}, X€Z_;

n(1)(x): = n(x), n(l)(x): = n(n(£_1)(x)), L2 2;

A= {x: x€2_, n(x) =x}.

In the system (1) the functions rijeA° (1sist, 1<jsm), K
is their index and 1l
¥i (i=1,t) z aij < Ni'

1<j<m
It follows therefore that the system (1) has a solution
x=(1,1,...,1), since RT__(l) = 1.
13

We use the following definitions. P - the set of prime
numbers, d(x) - the number of positive divisors of xez+, wn(n) -
the set of solutions of the stationary equation Rn(x)=n, nez,

The main theorems

lo. Theorem 1. Let n€A® and let the following conditions

be true:
1. The function n(p) - », when p€P and p -+ =.
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2. For any m (m€Z,), n{(n(2n+l)) # n(2m+l).

1

lw
=]
o
[

set A~
n

o~

~t def (x: xez

A 4

n(x)eAn}, (2)
is limited.
4. The following inequalities are satisfied
Ky (xy), 1f (DT (-1)¥ = 2;
f(n(x)+f(n(y) < (3)
> N X y
Kn(xy)+1’ if (=1)7+(-1)% < 2.

Then for any n (n€Z), wn(n)#ﬂ and is limited.

Theorem 2. Let n€A°, C, 2 2, and let the following condi-

tions be true:
1. The function n(p) - =, when p€P and p - =.

. For any p (p€P), d(n(p)) =< C,.

LS

fw
=

he set A;1 is limited.

4. The inequalities (3) are satisfied.
Then for any n (neZ+) the set
def =~ _
Tn,C1(n) = {x: xez_, Kn(x) =n, d(x) £ C,} (4)
is empty or T . (n) # # and is limited.
[ |

Another sufficient conditions will be given in the next
Theorem 3. Therefore we shall define a subset A* of A°. For eve-
ry function n€A* the set An = {1}.

Let A* be the set of functions n(x) = n, n: Z+ ~ 2. which

satisfies the conditions:

. n(l) =n(2) =1.

b

2. ¥x (xez+, x23), 2 £ n(x) < x.
The index Rn(x) in A* we denote by K;(x).

Theorem 3. Let n€A* and let the following conditions be

true:
1. There exists such C, (0 <cC, <1) that for any x (xez+)

C,d(x) £ d(n{x)) < d(x) (5}
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2. For any m (meZ+) there exists such Cn (22) that for any
x (x€2.), d(x) <= m)

X < Cmn(x). (6)

Then for any n (neZ+), wn(n) = @ or wn(n) # @, is limited
and for any pair y,m (yez+,mez+,ye¢n(r), d(y) < m) the following
estimate is true

n
y £ Cp. (7)

Corollary. Let 1€A* and let be given the system of numbers
A N . 2 RS S .
{Cij}l,]=1’ Ci; 2 2, and the system of sets A5 5=1r A7 0,
which satisfies the formulas:
¥x,1i,j (xeAij, ieZ+, jeZ+)

t(x)ea,.,
+ (8)
X < Cijr(x)
Then for every pair i,j we have:

¥n (n€z ) wn(r)f\Aij =g

or'wn(r)r\Aij # @ and

max{x: xewn(r)f\Aij} < ng. (9)

Proofs
g°. Proof of the Theorem 1. From the definition of Rn(x),
formula (3) and by the mathematical induction we have

- =~ u
Kn(2) =1, ¥Yu (€Z+) Kn(2 ) 2 u.

Hence for any n (ez+)

Q

ef

v (n) {t: tez, Kn(t) = n} # @.

By formula y (n)=n"'(A ) and condition 3, y, (n) is limited.

Suppose that (n > 1) . -
‘P1(T])r---lwn(n)
are limited and investigate Yotq(n) . Let
d
D=L r maxies tey (). (10)

1£j<n
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There is a number C, (21) such that
¥p (p€P, p > C ) ni{p) > X,
(condition 1). Therefore, if p > C,, then Rn(p) > n+2.

Let z€y (n)

n+1
1. If z€p, then
z £C,. (11)

2. If z¢pP, z = 1(2), then z=xy, x =1 3y(2), x 23, y23. By
condition 2 Rn(x) 2 2, Rn(y) > 2. Then inequality (3) gives
2 < Kn(x) <n, 2% Kn(y) < n. Using the assumption of induction
we derive

X < Xn, y <X, z=xy< X;. (12)
3. If z@P, z =0(2), then z=xy, x 22, y 22.

a) Let x 20(2), y=1(2). By (3) f(n(y) < n+l. Using condi-
tion 2 Rn(y) > 2 and Rn(x) < n. Therefore

xSXn,~y<C3+X;,
z = xy < X (C,+X7). (13)

8) Let x =y =0(2). By inequality (3) we get Rn(x) < n,
Rn(y) < n. Using the assumption of induction x < Xn’ y < Xn and

2 .
z S X7 (14)
The inequalities (11), (12), (13), (14) proves
<]
z < CSXn + Xn
and we obtain Theorem 1.

Proof of the Theorem 2. By condition 3

-1
g # T1'C1(n) cy,(n) =n "(A)

and T1 C (n) is limited. Suppose that for any j (j=1,n;n 21)
r-a

Tj,C1(n) = ¢ or lec1(n) # ¢ and is limited. Investigate Tn+1,C1(n)'

Let

[eN

def naxit: te U T. o (m)}. (15)
™

1<j<n

Xl
n

There is a number C, (z1) such that
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vp (p€P,p >C,) n(p) > Xp

(condition 1). Therefore, from the condition 2

npre U T, . (n)
- j=n+1 J'c1
and Kn(p) 2 n+2.

(n).

Let Tn+1,C1(") # ¢ and z€T

n+1,C1

1. 1f zep, then

zsC,. (16)

2. Let 2P and z =1(2). By p we denote some prime divisor
of z, z=ps, sez+. From (3) Rn(p) < in(ps) = n+l. Using (15), (16)
and the assumption of mathematical induction, we obtain

P <X +C,.

Since d(z) s C,, then

z < (xpec )82 < xpee ). (17)
3. Let zeP and z = 0(2).
a) If z = Zzy,where 2 21, y23, y=1(2), then by (3)

-~ 2 ~ ~ _

Kn(2 ) + Kn(y) < Kn(z)+1 = n+2,

But Rn(zn) 21 and, therefore, in(y) < n+l. Besides this d(y) <
<d(z) sC,. If 1 skn(y) < n, then by induction y < Xﬁ. If
Rn(y) = n+l, then for prime y (item 1) and multiple y (item 2)
we have the following considerable estimates

yscC,,yc< (x£+C“)C1.
Hence

y < (xrac, )1,
Since 2 < C,, we have

z = 2% < 2% (x74c,)Cr. (18)

B) If z =2T, T > 2, then from the inequality Tt < d(z) s C
it follows

1

z < 21 (19)

The inequalities (16), (17), (18), (19) prove
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(o} C
z < 2 1(xl’,‘+c“)
and the Theorem 2.

Proof of the Theorem 3. The set ¥,{(n)={1,2}. Therefore theo-
rem is true for n=1. Suppose that the theorem is true for some
n (ez ) and consider n+l > 2. Let wn+1(n) # @ and ye¢n+1(n) Then
n(y)ew (n) # @. By assumption of mathematical induction ¥n (n) is
limited Then there exists b —b (n) (€2z,) such that

vt (ey (n))

t < b (n), d(t) S b_(n). (20)
By (5) we have

d(y) < c'atn(y)) < ¢cz'p (n),

aty) s [C:»bn(n)]-

It is proved, that the function d(y) is uniformly bounded on

n+1(n) It follows from (6) and (20) that

yscCc _ n(y) s c_ _ b_(n)
[c2'b, ()] [ez'p (m] ™

Consequently ¢ (n) is limited.

n+1
We shall prove (7). Let yewn+1(n) and d(y) < mez+. Then
by (5)
d{n(y)) < d(y) £ m
and n(y)ew (n). Using (6) and assumption of induction for n(y),
we obtain

n+1

n _
y < Cmn(y) < Cm-Cm = Cm

and the Theorem 3.

Corollary may be proved by analogous method.

Applications
éo. We shall illustrate some mathematical applications of
results in the theory of stationary inequalities.

Let A, be the set of all functions neéAr*, which satisfies
the condition
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K* (xy), if (-DX+(-1)Y = 2;
K¥ (X)+K* (y) <
K* (xy)+1, if (-D¥+(-1)Y < 2,

Suppose that the m,t,a, 'j (1sist, 15jsm), N, (1<ist)
’

are natural numbers and for any i (1 <i <t), I a,. <N,. Let
1Sj_m 1] .

Tij = rij(x), (1 <i<t, 1<j<m) are elements of A

We consider the following system of stationary inequalities

* * *
1.K% (x1)+a12KT12(x2)+...+a1mKT () sN,,

11
..... T (21)
a, K* (x_ )+a, K* (x_)+...+a. K* (x ) <N,.
t1 Teq 1 ta2 Tea 2 tm Tem M t

The vector (x1,x3,...,xm)ezT, which satisfies (21) is called the
solution of (21).

in [7], according to properties of the function K*(x), nea,
the following Theorem was proved.

Theorem 4. Let for any i,j (1 <ist, 1 <j <m) there exists

i3 (cij‘a 2) such that for any prime p

C
p < 'CijTij (p).

Then the set of solutions of the system (21) is limited. The

number A of all solutions of the system (21) satisfies the inequa-

lity

-
2[a lel] [aile !
A < min n 2 -(Ci. ),
15ist 1<§<m J
where [a13 ;] is the entire part of aj JNi'

Basing on the Theorem 1-3 we can consider the systems (1)
and receive estimates for the number of solutions of the systems
(1). Also may be received the bounds of these solutions, which
with the help of electronic machins solves the problem of fin-

ding all solutions of systems (1) for the small numbers m,t,aij,Ni.
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NPUMEHH HA METONOT HA MHAVKIUJA BO TEOPHJATA
HA AMNCTPAKTHH CTAIMOHAPHH PABEHKH

H.B. Kynukos
Pe3aunume

Ce pasriienysaaT OHPEAEeHH aNnCTpaKTHH CHCTEeMH CTalnHOHapHH

HepaBeHKH, ce (OopMysI¥paaT H NokaxXyBaaT TEODeMHM 3a pemeHHjaTa Ha
COOOBETHM ANCTPAaKTHU CTAlHOHApPHH PaBEHKHM H Ce npasaT OUEHKH 3a
6pojOT Ha pemeHnja Ha HEPaBeHKHTE.




