ISSN 0351-336X

Математички Билтен 17 (XLIII) 1993 (21-31) Скопје, Македонија

FREE OBJECTS IN A VARIETY OF COMMUTATIVE VECTOR VALUED SEMIGROUPS

Biljana Janeva

 $\underline{0}$. Abstract. In [5] constructions of free objects in some classes $\overline{\text{of (n,m)}}$ -semigroups are given. In this paper we give a description of a free object with a given nonempty basis in a class of commutative (n,m)-semigroups defined by a system of identities of the form

$$[x_1^p] = [y_1^q],$$

where p,q > m and $(x_1,...,x_p) = (y_1,...,y_q)$.

<u>1. Preliminaries.</u> Notations we use in this paper are the same as in [5]. Namely, if A^m is the m-th Cartesian power of A, $A \neq \emptyset$, then an element $(a_1, \ldots, a_m) \in A^m$ will be denoted by $a_1 \ldots a_m$, or a_1^m ; a_1^r will denote the element $(a_1, \ldots, a_r) \in A^{r-1}$ if $i \leq r$, and the empty sequence if i > r; $(x_j)^r$ denotes the sequence $x_j \ldots x_j$.

Let $Q \neq \emptyset$, and m,k be positive integers. A mapping []: $a_1^{m+k} \rightarrow [a_1^{m+k}]$ from Q^{m+k} into Q^m , such that

$$[x_1^{i}[x_{i+1}^{i+m+k}]x_{i+m+k+1}^{m+2k}] = [[x_1^{m+k}]x_{m+k+1}^{m+2k}],$$

for each $x_{v} \in Q$, $1 \le i \le k$, is said to be an associative (m+k,m)-operation, and the pair (Q;[]) an (m+k,m)-semigroup ([2]). By GAL (the general associative law for vector valued semigroups ([2])), for every $s \ge 1$, [] induces a unique (m+sk,m)-operation $[]^s:Q^{m+sk} \to Q^m$. We say that the (m+sk,m)-semigroup $(Q:[]^s)$ is derived by the (m+k,m)-semigroup (Q;[]). These facts suggest to use the notation $[a_1^{m+sk}]$ instead of $[a_1^{m+sk}]^s$.

If, moreover,

$$[x_1^{m+k}] = [x_{\sigma(1)} \dots x_{\sigma(m+k)}]$$

for every permutation σ on $(1,2,\ldots,m+k)$, then we say that (Q,[]) is a <u>commutative</u> (m+k,m)-<u>semigroup</u>. Every derived semigroup of a commutative (m+k,m)-semigroup is commutative as well (GACL [4]).

Let (Q,[]) be a commutative (m+k,m)-semigroup, such that the identities

$$[(x_1)^{\alpha_1}...(x_r)^{\alpha_r}] = [(x_1)^{\beta_1}...(x_r)^{\beta_r}],$$
 (1.1)

are valid for $\alpha_{_{\text{V}}}$, $\beta_{_{\text{V}}} > 0$, $\Sigma \alpha_{_{\text{V}}} = m \pmod{k}$, $\Sigma \beta_{_{\text{V}}} = m \pmod{k}$, where $(x_{_{\text{V}}})^{^{\alpha_{_{\text{V}}}}}$ denotes the sequence $x_{_{\text{V}}} \dots x_{_{\text{V}}}$. Denote by $C_{k,m}$ the class of all commutative (m+k,m)-semigroups which satisfy (1.1).

Let us denote by (the class of commutative (m+k,m)-semi-groups that satisfy the identity

$$[(x_*)^k x_*^{m+k}] = [x_*^{m+k}]$$
 (1.1')

It is easy to prove that

 1.1° . The class $C_{k,m}$ is the class of commutative (m+k,m)-semigroups that satisfy (1.1').

 1.2° . Let $(Q,[]) \in C_{1,m}$, and [[]] be an (m+k,m)-operation on Q defined by:

$$[[a_1^{m+k}]] = [a_1^{m+k}]$$
 (1.2)

Then $(Q,[[\]])\in C_{k,m}$.

Conversly, let (Q,[[]]) $\in \mathbb{C}_{k,m}$, and let [] be an (m+1,m)-operation defined by

$$[aa_1^m] = [[(a)^k a_1^m]]$$
 (1.3)

Then $(Q,[]) \in (1,m)$, and $[[a_1^{m+k}]] = [a_1^{m+k}]$.

<u>Proof.</u> By the general associative and commutative law (GACL) we obtain that [[]] is a well defined associative and commutative operation on Q, and the identity (1.1') holds.

To prove the converse of the statement it suffices to prove only that [] does not depend on the choice of a, i.e. that

$$[aa_1^m] = [a_1a_1^{i-1}a_{i+1}^ma],$$
 (1.4)

for every $i \in (1,2,\ldots,m)$.

Namely,

$$[aa_1^m] = [[(a)^k a_1^m]] = [[(a_i)^k a_1^{i-1} a_{i+1}^m a]] = [a_i a_1^{i-1} a_{i+1}^m a]$$

We note that using the GACL for commutative vector valued semigroups, it is clear that to any (m+1,m)-semigroup an (m+k,m)-semigroup can be associated, thus we can concider the (m+1,m)-

semigroup $(Q,[]) \in C_{1,m}$, as a commutative (m+k,m)-semigroup satisfying (1.1').

A subset P \subseteq Q of an (m+k,m)-semigroup (Q;[[]]) is a <u>subsemigroup</u> iff $[[b_1^{m+k}]] \in P^m$, for every $b_i \in P$.

Let (Q,[[]]), (Q',[[]]') $\in C_{k,m}$. A mapping $\phi:Q \to Q'$ is a homomorphism iff

$$\phi[[a_1^{m+k}]] = [[\phi(a_1)...\phi(a_{m+k})]]'$$

We note that in [2] it is shown that a nonempty intersection of subsemigroups of an (m+k,m)-semigroup is a subsemigroup, that a homomorphic image of an (m+k,m)-semigroup is an (m+k,m)-semigroup, and thus a notion of subsemigroup generated by a nonempty set A can be introduced in a natural way.

A free object with a nonempty basis B in a class D of (m+k,m)-semigroups is introduced in the usual algebraic way, i.e.

- $(Q;[])\in]$ is a free object with a basis B iff the following conditions are satisfied:
 - (1) B generates (Q;[]);
- (ii) if $(Q';[]') \in]$, and $\lambda:Q \to Q'$ is an arbitrary mapping, then there exists a homomorphism $\phi:Q \to Q'$ which is an extension of λ .

Next we note some connections between an (m+1,m)-semigroup $(Q;[]) \in C_{1,m}$ and the associated (m+k,m)-semigroup $(Q;[[]]) \in C_{k,m}$. Namely,

- 1.3° . Let $(Q;[]), (Q';[]') \in \mathcal{C}_{1,m}$, and (Q;[[]]), (Q';[[]]') be the associated (m+k,m)-semigroups belonging to $\mathcal{C}_{k,m}$, respectively. Then
- (i) P is a subsemigroup of (Q;[]) iff P is a subsemigroup
 of (Q;[[]]).
- (ii) $\phi: Q \to Q'$ is a homomorphism from (Q; []) into (Q'; []') iff ϕ is a homomorphism from (Q; [[]]) into (Q'; [[]]').
- (iii) A nonempty subset $A\subseteq Q$ generales (Q;[]) iff A generates (Q;[[]]).
- (iv) (Q;[]) is a free object with a basis B iff (Q;[[]])
 is a free object with a basis B. □

2. m-dimensional semilattices. Let Q be a nonempty set, F(Q) the family of all finite nonepmty subsets of Q, m be a positive integer, and $F_m(Q)$ the family of all nonempty subsets of Q with not more then m elements. Denote by π the canonical mapping from Q^m into $F_m(Q)$, i.e. $\pi(a_1^m) = \{a_1, \ldots, a_m\}$. (In other words $\pi(a_1^m)$ is the <u>content</u> of a_1^m .)

We say that (Q;f) is an m-dimensional groupoid if f is a mapping from F(Q) into Q^m . If, in addition, the following equation

$$f(\pi f(X)UY) = f(XUY) \tag{2.1}$$

holds for every $X,Y \in F(Q)$, then we say that (Q;f) is an m-dimensional semigroup.

The class of m-dimensional semigroups is (in a corresponding sence) equivalent to a class of (m+k,m)-semigroups.

We are now ready to establish some connections between mdimensional semigroups and vector valued semigroups. The proofs of these statements are quite clear.

 2.1° . Let (Q;f) be an m-dimensional semigroup, and let a mapping []:Q^{m+k} \rightarrow Q^m be defined by:

$$[a_1^{m+k}] = f(\{a_1, \dots, a_{m+k}\})$$
 (2.2)

Then, (Q;[]) is an (m+k,m)-semigroup, such that for every r,s \geq 1, $a_{+}^{m+rk} \in Q^{m+rk}$, $b_{+}^{m+sk} \in Q^{m+sk}$, the following implication holds:

$$\pi(a_1^{m+rk}) = \pi(b_1^{m+sk}) \rightarrow [a_1^{m+rk}] = [b_1^{m+sk}],$$
 (2.3)

i.e. (Q;[]) C_{k.m}.

Conversely, let $(Q;[]) \in C_{k,m}$, i.e. (Q;[]) satisfies the implications (2.3). Let $X=\{a,a_1,\ldots,a_p\}\in F(Q)$, where $a,a_v\in Q$, $p\geq 1$, and let q be a positive integer such that p+q=m+sk, for some $s\geq 1$. Then, if we define

$$f(X) = [a^q a_1^p],$$
 (2.4)

a well defined m-dimensional semigroup (Q;f) is obtained, such that the identity (2.2) holds. (In this case we say that (Q;[]) is an (m+k,m)-semigroup <u>associated</u> to the m-dimensional semigroup (Q;f), and vice versa).

A nonempty subset $A \subseteq Q$ is a <u>subsemigroup</u> of (Q;f) iff $f(X) \in A^{m}$, for every $X \in F(A)$. Let (Q;f) and (Q';f') be two m-dimensional semigroups and $\phi: Q \to Q'$ a mapping. ϕ is a <u>homomorphism</u> iff $\phi(f(X)) = f'(\phi(X))$, for every $X \in F(Q)$.

- 2.2° . (i) A nonempty intersection of m-dimensional subsemigroups is an m-dimensional subsemigroup. \bullet
- (ii) Homomorphic image of an m-dimensional semigroup is an m-dimensional semigroup.

This last proposition gives us an opportunity to define a subsemigroup of an m-dimensional semigroup (Q;f) generated by a nonempty subset $A\subseteq Q$ in a natural way.

A free object with a basis $B \neq \emptyset$ in the class of m-dimensional semigroups is introduced in the usual way. Namely, let (be a class of m-dimensional semigroups. We say that $(Q;f) \in C$ is a free object with a basis B in the class (iff the following conditions are satisfied:

- (i) B generates (Q;f);
- (ii) For any m-dimensional semigroup $(Q';f')\in C$, and any mapping $\lambda:B\to Q'$, there exists a homomorphism $\phi:Q\to Q'$ that extends λ .

The next proposition will explain the motivation of introducing the notion of m-dimensional semilattices.

- 2.3° . Let $(Q;[]),(Q';[]')\in \mathcal{C}_{k,m}$, and (Q;f),(Q';f') be the associated m-dimensional semigroups, respectively. Then
- (a) P is a subsemigroup of (Q;[]) iff P is a subsemigroup
 of (Q;f);
- (b) $\phi: Q \to Q'$ is a homomorphism from (Q; []) into (Q'; []') iff it is a homomorphism from (Q; f) into (Q'; f');
 - (c) A≠Ø generates (Q;[]) iff A generates (Q;f);
- (d) (Q;[]) is a free object with a basis A in the class $C_{k,m}$ iff (Q;f) is a free object with a basis A in the class of all m-dimensional semigroups. σ

This proposition, together with proposition $\underline{1.3}$ and $\underline{1.4}$ allow us to deal only with m-dimensional semigroups and giving a construction of a free m-dimensional semigroup with a given basis, we will obtain a free object with the same basis in $C_{k,m}$ and in $C_{1,m}$, as well.

3. Construction of a free m-dimensional semigroup. To give a construction of a free m-dimensional semigroup with a basis B, we will recall some definitions and results given in [9]. Namely, let $f:F(Q) \to F_m(Q)$ be a mapping. Then we say that (Q;f) is an m-dimensional object. If, further more,

$$f(f(X)UY) = f(XUY), \qquad (3.1)$$

for any $X,Y \in F(Q)$, then we say that (Q;f) is an associative m-dimensional object.

Let $B \neq \emptyset$, $B \cap N = \emptyset$ and let a sequence of sets $(C_{\alpha} \mid \alpha \geq 0)$ be defined by:

$$C_o = B, C_{p+1} = C_p U(N_m \times F(C_p)),$$
 (3.2)

where $N_m = \{1, 2, ..., m\}$, and m is a given positive integer, and put $S_B = U\{C_D \mid p \geq 0\}$.

Let $y \in S_B$. If p is the least nonnegative integer such that $y \in C_p$, then we write X(y) = p and say that p is the <u>hierarchy</u> of y. The hierarchy, X(Y) of a set $Y \in F(S_p)$ is the number $\max\{X(y) \mid y \in Y\}$.

We will next define a relation α , in $F(S_{\mathbf{R}})$.

(a) If $X,Y \in F(S_n)$, then: $X \cap Y \leftrightarrow X \cap Y$, for each $Y \in Y$.

Thus, it remains to define the meaning of $X_{\alpha y}$, for $X \in F(S_B)$, and $y \in S_B$, and we will define this relation by induction on the hierarchy of y. (Here we use the notation u for the set $\{u\}$.)

First:

(b)
$$X(y) = 0 \Rightarrow (X\alpha y \leftrightarrow y \in X)$$
.

Assume $u=(i,Y) \in S_B$, $\chi(u)=t \geq 1$, and that we have a procedure to determine wether $X \circ y$, for every $X \in F(S_B)$, $y \in S_B$ such that $\chi(y) < t$. Then $\chi(x)$ iff at least one of the following conditions is satisfied:

- (c_1) u $\in X$,
- (c₂) Xay, for every y∈Y.

By induction on hierarchy, it can be easily seen that α is a well defined relation in $F(S_B)$. (If $X\alpha Y$, we say that "X <u>absorbs</u> Y".)

Now we will define a subset R_B of S_B (we will say that R_B is the set of irreducible elements of S_B) as follows:

- B⊆R_R;
- 2) $u=(i,Y) \in R_{\underline{R}}$ iff the following conditions are satisfied:
- 2.1) YEF(R_R),
- 2.2) there does not exist a zey, such that $(Y \sim z) \alpha z$,
- 2.3) Y does not contain a subset of the form $\{(1,z),(2,z),\ldots,(m,z)\}$.

An $X \in F(R_B)$ is said to be <u>reducible</u> iff it satisfies the following conditions:

- 2.2') there exists a $z \in X$ such that $(X \setminus z) \alpha z$, or
- 2.3') there exists a subset of X of the form $\{(1,z),(2,z),\ldots,(m,z)\}$.

 $X \subseteq R_B$ is <u>irreducible</u> iff it is not reducible.

The next step is to define an associative object on R_B . For that purpose we need a definition of <u>norm</u>, ||X||, X \in F(R_B). It is defined by induction on hierarchy, in the following way:

- 3.1) $||X|| = 0 \leftrightarrow X \subseteq B$;
- 3.2) ||(1,X)|| = 1+||X||;
- 3.3) If $X = \{x_1, ..., x_n\}$, |X| = n, then

$$||X|| = ||x_1|| + ||x_2|| + ... + ||x_n||$$

Now we will define an associative object $(R_B;g)$ as follows:

(i) If $X \in F(R_B)$ is irreducible, then g(X) = X.

Assume now that $X \in F(R_B)$ is reducible and for every $Y \in F(R_B)$, such that ||Y|| < ||X||, an irreducible set $g(Y) \in F(R_B)$ is well defined and the following relation holds:

$$g(Y) \neq Y \leftrightarrow ||g(Y)|| < ||Y||$$
 (3.3)

Consider, first, the case when 2.2') is satisfied, and let

$$x = x_{p_1} u ... u x_{p_k}$$
 (3.4)

where $p_1 < ... < p_k$, and $x \in X_{p_k}^{n} \Leftrightarrow X(x) = p_k$.

Let s be the greatest number such that

$$X' = X_{p_1} \dot{U} \dots U X_{p_g}$$

does not satisfy 2.2'). Then $1 \le s < k$. Denote by Z the set of all z \in X'X', such that X' α Z, and let Y=X\Z. Then we have Z \neq Ø, Z \cap Y=Ø and ||Y|| < ||X||. Therefore $g(Y)\in$ F(RB) is a well defined irreducible set, and now we define g(X) by:

(ii)
$$g(X) = g(Y)$$
.

We have $||g(X)||=||g(Y)|| \le ||Y|| \le ||X||$, i.e. (2.3) holds.

Finally, assume that X does not satisfy 2.2'). Then 2.3') holds, and therefore X has the form

$$X = X' \cup \{(1, Z_1), \dots, (m, Z_m), \dots, (1, Z_k), \dots, (m, Z_k)\},$$

where X'= \emptyset or X' is irreducible and $v \neq \lambda \Rightarrow Z_v \neq Z_{\lambda}$. Now we have $||X'UZ_1U...UZ_{k}|| < ||X||$, and thus g(X) can be defined by:

(iii)
$$g(X) = g(X'UZ_1U...UZ_k)$$
.

In this case, we also have

$$||g(X)|| = ||g(X'UZ_1U...UZ_k)|| \le ||X'UZ_1U...UZ_k|| < ||X||$$

Therefore $g:F(R_B) \to F(R_B)$ is a well defined mapping, such that (1.5) holds for every YEF(R_B).

 3.1° . (R_B;g) is an associative m-object. \square

Now we are ready to give a construction of a free m-dimensional semigroup with a basis B.

 3.2° . Let B be a nonempty set, and let R_{B} and g be define as above. Define a mapping $f:F(R_{R}) \rightarrow (R_{R})^{m}$ by

$$f(X) = (1,g(X))...(m,g(X))$$
 (3.5)

Then we have:

(i) (R_B;f) is a free m-dimensional semigroup with a basis B.

- '(ii) The identity automorphism of $(R_B;f)$ is the unique automorphism of $(R_B;f)$, which is an extension of the embedding mapping from B into R_B .
- (iii) If (Q;f') is a free m-dimensional semigroup with a basis B, then there is a unique isomorphism $\phi:(R_B;f)\to (Q;f')$ which is an extension of the embedding from B into Q.

 $\underline{Proof}.$ It is clear that $(R_{\underline{B}};f)$ is an m-dimensional groupoid. Let $X,YEF(R_{\underline{n}})$. Then

$$f(\pi f(X) \cup Y) = f(\{(1, g(X)), ..., (m, g(X)\}) \cup Y) =$$

$$= ((i, g(\{(1, g(X)), ..., (m, g(X))\} \cup Y)))_{i \in \mathbb{N}_{m}} =$$

$$= ((i, g((g(X)) \cup Y)))_{i \in \mathbb{N}_{m}} =$$

$$= \{(1, g(X \cup Y)), ..., (m, g(X \cup Y))\} =$$

$$= f(X \cup Y)$$

Thus, (R_R,f) is an m-dimensional semigroup.

Let (S,f) be a subsemigroup of (R_B,f) , generated by B. We shall prove, by induction on the hierarchy, that $S=R_B$.

Let $x \in R_B^*$. If X(x) = 0, then $x \in B \subseteq S$. Suppose that for all $y \in R_B^*$, such that X(y) < r, $y \in S$, and let x = (i, Y) is such that X(x) = r. Then X(Y) = r - 1; thus $Y \subseteq S$. But then $f(Y) = \{(1, Y), \dots, (m, Y)\} \in S^M$ implies $x \in S$.

 $\xi_0 = \lambda$. Let ξ_{ν} be define for all elements of R_B with hierarchy less then i+1, such that ξ_j is extension of ξ_{j-1} . We define ξ_{j+1} in the following way:

if $\chi(x) < i$, then $\xi_{i+1}(x) = \xi_i(x)$. Let $\chi(x) = i+1$, and $x = (j, \{y_1, \dots, y_p\})$. Then

$$\xi_{i+1}((j,Y)) = f'_{j}(\{\xi_{i}(Y_{1}),...,\xi_{i}(Y_{p})\})$$

Define a mapping $\xi: R_{\mathbf{p}} \to Q$ by

$$\xi(x) = \xi_i(x) \text{ iff } X(x) = i.$$

Then ξ is a homomorphic extension of λ .

Thus, (R_B,f) is a free m-dimensional semigroup with a basis B.

It should be noted here that the class of semilattices is a proper subclass of the class of 1-dimensional semigroups. Namely, the class of corresponding semigroups coincides with the variety of commutative semigroups which satisfy the law:

$$x^2y = xy$$

This suggests to define an m-dimensional semilattice as an m-dimensional semigroup which satisfies the following equality:

$$\pi f(a) = a, \qquad (3.6)$$

for every aEQ.

 3.3° . Let B be a nonempty set and L_{B}^{1} be defined in the following way

$$M_o = B$$
, $M_{p+1} = M_p U(N_m \times \{X \in F(M_p) \mid |X| > 1\})$, $L_B^1 = U_{p>0} M_p$

If we define a mapping $t:F(L_B^1) \to (L_B^1)^m$ by:

$$\ell(X) = \begin{cases} X^{m}, & \text{if } X \in L_{B}^{1} \\ (1,g(X)), \dots, (m,g(X)), & \text{if } X \in F(L_{B}^{1}) \setminus L_{B}^{1} \end{cases}$$

then we obtain a free m-dimensional semilattice with a basis B. u

There is a possibility to change the definition of the notion of m-dimensional semilattices replaceing (2.8) by:

$$(\forall X \in F_m(Q)) \pi f(X) = X, \qquad (3.6')$$

but in this case, if $m \ge 2$, free m-dimensional semilattices, such that $|B| \ge 2$, would not exist, as the following example shows:

Example 3.4. Let m=2, and B=(a,b), and define operation f, and f' from F(B) into B^2 by:

$$f({a}) = aa, f({b}) = bb, f({a,b}) = ab,$$

 $f'({a}) = aa, f'({b}) = bb, f'({a,b}) = ba.$

The mapping $a \rightarrow a$, $b \rightarrow b$ could not be extended into a homomorphism from (B;f) into (B;f'), as $f(\{a,b\}) \neq f'(\{a,b\})$.

The class of m-dimensional semigroups is in fact a subclass of the class of vector valued semigroups ([2,5]). In a similar way, one could define a special kind of m-dimensional semilattices as a special subclass of fully commutative vector valued semigroups ([4]).

REFERENCES

- [1] Clifford, A.H., Preston, G.B.: The algebraic theory of semigroups, I,II, Moskva, 1972 (in russian)
- [2] Čupona, G., Celakoski, N., Markovski, S., Dimovski, D.: Vector valued gorupoids, semigroups and groups, "Vector valued semigroups and groups", Macedonian Acad. of Sci. Art., 1988 (1-79)
- [3] Čupona, G., Celakoski, N.: Transformations of booleans of sets, Matem. Bilten 14 (XL), Skopje, 1990 (15-26)
- [4] Čupona, G., Dimovski D., Samardžiski, A.: Fully commutative vector valued groups, Macedonian Acad. of Sci. Art., Prilozi VIII-2. Skopje. 1987 (5-17)
- Prilozi VIII-2, Skopje, 1987 (5-17)
 [5] Čupona, G., Markovski, S., Dimovski, D., Janeva, B.:
 Introduction to combinatorial theory of vector valued semigroups, "Vector valued semigroups and groups",
 Macedonian Acad. of Sci. Art., 1988 (141-185)
- [6] Čupona, G., Celakoski, N., Markovski, S., Janeva, B.: Free objects in generalized groupoids, (unpublished)
- [7] Čupona, G., Markovski, S.: Free objects in the class of vector valued groupoids induced by semigroups, (unpublished)
- [8] Janeva, B.: Free fully commutative vector valued groups, Proc. of the Conf. "Algebra and Logic", Znanstvena revija, Vol. 2. Maribor. 1989 (75-86)
- Vol. 2, Maribor, 1989 (75-86)
 [9] Čupona, G., Janeva, B.: On free objects in some classes of finite subset structures, (unpublished)

СЛОБОДНИ ОБЈЕКТИ ВО ЕДНА МНОГУКРАТНОСТ КОМУТАТИВНИ ВЕКТОРСКО ВРЕДНОСНИ ПОЛУГРУПИ

Б. Јанева

Резиме

Во овој труж разгледуваме една класа комутативни (n,m)-полугрупи во кои важат идентитетите

$$[(x_1)^{\alpha_1}...(x_r)^{\alpha_r}] = [(x_1)^{\beta_1}...(x_r)^{\beta_r}],$$

за $\alpha_{_{\mathcal{V}}},\beta_{_{\mathcal{V}}}>0$, $\Sigma\alpha_{_{\mathcal{V}}}=m \pmod{k}$, $\Sigma\beta_{_{\mathcal{V}}}=m \pmod{k}$, k=n-m>0 и даваме конструкција на слободен објект со дадена непразна база.

Biljana Janeva Prirodno-matematički fakultet P.b. 162 91000 Skopje