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VECTOR VALUED FIELDS

Kostadin Trencevski

Abstract. In this paper we intradduce (n,m)-fields and fully
commutative (n,m)-fields, as a continuation of the vector valued
groups and fully commutative vector valued groups. Further we
give some examples of the introduced structures.

1. Preliminaries

In this section we will recall the basic definitions and
results which will be used in the next two sections.

For a positive integer i, ¢! denotes the i-th Cartesian
power of G. We will use the notation x=af

: insteaq of x=(x1,...,ai)
for the elements of G'. Since we will use also af for the i-th
power of a,, in order not to confuse (a1,...,a1) with (a1,...,ap),
only a?, with the exponent "p" or constant integer will denote a
power. Let n, m and k be positive integers and let n=m+k. The

following notions are defined in [1].

Definition 1.1. A map [ 1]: ¢" - @™ is called an (n,m)~
operation, and the pair (G,[ ]) is called an (n,m)-groupoid. An

(n,m) -groupoid (G,[ 1) is called an (n,m)-semigroup if the operation
[ 1 is associative, i.e. for each 1 £ i £ k and each x?+k€Gn+k,
i+n

j_+1]x

S I LM EN E A E ks B (1.1)

i+n+1 n+1
An (n,m)-semigroup (G,[ 1) is called an (n,m)-group if for each

aeGk and beG™, the equations

[ax] = b = [ya]l {1.2)
have solutions x,yEGm.

For example (see [2]), let (G,*) be an arbitrary group. Then
the pair (G*,[ 1) is (4,2)-group, where [xyzt] = (x*z,y*t). We
will use this in example 2 in section 3.

There are several definitions for the commutative analogs of

the above notions. We will use the following conventions. Let G(m)
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be the m-th symmetric product of G, i.e. G(m) = ¢™/» where = is
the equivalence on G™ defined by

X7 = yy <=> x| is a permutation of y§.

The following notions are defined in {4] and {5].
Definition 1.2. A map [ ]: G(n) - G(w? is called fully
commutative (n,m)-operation on G, and the pair (G,[ 1) is called

fully commutative (n,m)-groupoid. A fully commutative (n,m)~
groupoid is called fully commutative (n,m)-semigroup if the

operation [ ] is associative, i.e. for each 1 < i < k, and each
x?+k€G(n+k), the identity (1.1) is satisfied. A fully commutative
(n,m) -semigroup (G,[ 1) is called fully commutative (n,m)-group,
if for each aGG(k) and b€G(m), the equation

fax] = b (1.3)
has solution XEG(m).

Further we will use the initials "f.c." instead of "fully
commutative". In [10] and [9] many examples of f.c. (n,m)~groups
are given, All of them are built on the field of complex numbers
C, or a subset of (. Here we give only one example which we will
need later.

In [9] it is proven that there is a bijection v between C(m)
and (™, defined by

v(z1,...,zm) = (a1,...,am)

where a_ = ! z,, a_ = T Z.Zi g eee g @ T Z,
' ygigm * 1<i<jam 13 m

" Let us define a f.c. (n,m)-operation [ ] on (, as follows

z Z .

PR m

[27] = ) <=>

z, = I oW, L 2.2, = b3 W,W. yeeey L2, eea2; =
,<ign sSism b asi<isn Y3 gsicjsm b3 ' i, :

SWW, ... W
Using the fact that ( is algebraically closed field, one can
verify that (C,[ 1) is a f.c. (n,m)-group. It is called additive
{n,m)-group, and is denoted by ((,[ 1,). We notice that in [9]
are studied more general classes of such f.c. groups called
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affine and projective (n,m)-groups, and also topological (n,m)-
groups. :

Let (G,[ ]) be a given f.c. (n,m)-semigroup, n-m = k 2 1, and
let q be the least non-negative integer, such that m+q = 0 (mod k),
and let s be the least non-negative integer such that k(s-1)<m <ks
and m+tq = ks [5]. The following definition is given in [5], [9].

Definition 1.3. Define a binary operation * on G(m) by:
axb = [acb]) (1.4)

where cEG(q) for q 2 1; and c is empty symbol for q = 0, i.e.
a*b = [ab] for g = 0.

It is proved in [5], [9] that (G(m),*) is a semigroup. We say
that (G(m),*) is a derived semigroup for (G, ]). In case q 2 1,

the operation » depends on c, but any two derived groups of a f.c.
(n,m)-group, are isomorphic [9]. Analogous definition of derived
semigroup and results hold in the ordinary case (2], [3], [8],
[6], i.e. not fully commutative case. Further in both cases, the

induced binary operation
by "’Il .

*" in the derived groups will be denoted

Let (G,[ 1) be a f.c. (n,m)-semigroup and let ¢(*) = y (¥},
T orza
If xeG(r), then we say that the dimension of x is r, i.e. dim(x)=r.

(n) - G(m) induces a mapping

(+)

We notice that the mapping [ ]:
[ ]: G(+) - G(+)

{31, [7]:

u

, and we define a relation = on.G as follows

v iff there is aeG(+) such that [au]’ = [av]’.

Then u = v implies dim(u) = dim{v) (mod k), "=" is a congruence on

(+) and the factor structure G(+)/- is a commutative semigroup.

The commutative semigroup G(+)/‘ is called universal commutative

semigroup for (G,[ ]) and it is denoted by G(V) ([51. If (G,[ 1
is a f.c. (n,m)-group, then G(V) is commutative group, and G(v)
is called universal commutative group for (G,[ 1} ([51, [7]).

In this paper we will introduce two classes of vector valued
fields. The first is f.c. (n,m)-fields and the second is (n,m)-
fields. The both definitions introduce new structures over a
given field, like vector spaces. Further we give an example of
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f.c. (m+tk,m)-field on (, an example of (2m,m)-field and an example
of (ZP+1,ZP)—field cn (. Here the following two unsolved problems
naturally arise:

1. Whether each f.c. (m+k,m)-field for m 2 2, must be

constructed over an algebraically closed field?

2. Whether there exist an (n,m)-field such that m } n?

2. Introducing (n,m)-fields

Before we introduce (n,m)-fields, first we will prove the
following proposition.

{m)

Proposition 2.1. The ordered triple (C +,:), where the

operations "#" and "." are defined as follows

(a}) + (b = [a] BT, (2.1)
(@9 -« B = [e,, ¢y voe © 1 ven Sl
(c,.=a,*b.) (2.2)
ij "1 73

satisfies the following conditions:
(1) (C(m),+) is an Abelian group,

(ii) (Cim),') is an Abelian group, where

im) = {(21""'zm) |z€ +...+ zg # 0 for each p€{1l,...,m}},

(iii) The operation "." is distributive with respect to the
operation "4",

Proof. Since ((,I ]+) is a f.c. (2m,m)-group, the condition
(i) is satisfied. 4

In order to prove (ii) and (iii), we will use the semigroup
. Since the f. c. (n,m) -group (C(m),[ 1,) is induced by the
f.c. (m+l,m)-group (C( ),[ ] +) (see [91), we can temporary
suppose that k=1. In this case (k=1) we notice that in ( +) it
holds

C(+)

2l = wi => $2; 2, ... Z; = Iw, w, ... w, for lspsm,
1 12 lp 1 2 1P
From z, +...+ z, = W, teoot W and I zZ,2. = z w.w., it

1gi<jgr T3 asi<ysm 3
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r s

2 2 = s
follows ii1zi = ii1wi, and then from Zzizjzl = Zwiijz it follows
r s
z z; = I wi and so on. Moreover it holds
i=1 i=1

r:-._s r P S p .

zy = wy <=> I z7 = I'w/ for1l<p=2nm. (2.3)

i=1 i=1

Now we define mappings #,.: (P xC™*) =~ (M 45 £o110uws

r
(@h)em$) = () <=> I af+ : pP= I cP for l<psm (2.4)
i=n i=1 i=
and
r s il z P oo p
(ay) - (bY) = (c)) <=> I b (a b)¥ = = cy for l<p<m (2.5)
i=1 §=1 3 i=1
i.e. ‘
s o r s mo
(@D -5 = (& <=> (a2 bd) = ¥ b for 1spsm. (2.6)
f = — 1 . 1
i= i=1 i=1

Using (2.3), (2.4) and (2.6) it is easy to verify that if

af = b? and cf = dY, then

(aH)#(c) = H+(@Y) and (al).(c5) = Y. (@N).

CM V)~ c(m) ¢V

Hence "#" and "-" are mappings +4,.: , where
was defined by C(+)/;. It is easy to verify that their restrictions

on (M xcM 4re given by (2.1) and (2.2).

Now let us return to the proofs of (ii) and (iii). Namely,
using the identities (2.4) and (2.6), it is easy to verify that
(iii) is satisfied and that the operation "." is commutative and
associative. Besides, if aT and bT are such that

T ai#o and T bP;eo then (a%) - (b%)=(c%) where T cf#0 for 1<psm,
i=1 i=1 i=1

cem, ctm

and hence ( -) is Abelian semigroup. The element e=(1,0,...,0)€

is neutral element and the equation

(@M -(x7) =e, 1.e. ( B ap)( I xp) =1 for 1 £ p<m
i=1 m i=1
uniquely determines the sums E-xg for p€{1,...,m}, hence
i=1
(xT)GC(m) is uniquely determined, and (ii) is proved. ¢

From the proof of the proposition we notice that for each
p€{l,....,m} the mapping h : ¢~ C defined by



22

r
h_(zf)y = ¢ 2P (2.7)
p j=q 1

induces homomorphisms hp: (C(m),+) - (C,+).and hp: (Cim),-) - (C\{0},-)
of groups and also '

zh 2wl - hp(zf) = hp(wf).

The invertible elements of the operation "." are all zT such that
hp(zf) # 0 for p€{1l,...,m}. We also notice that (C(m),+) is the

derived group for the f.c. (2m,m)-group ((,I ]+).

The previoﬁs proposition together with this discussion, leads
us to the following definition.

Definition 2.1. Let (F,+,:) be a field, and [ ]: F(n) - F(m)
R R YR
and *: F(m)xF m} . F(m) be given maps. The ordered triple (F,[ 1,*)
is called f.c. (n,m)~-field, if the following axioms are satisfied:

(1) (r,[ 1) is a f.c. (n,m)-group;

(ii) The ordered triple (F(m),é,*) is a commutative ring with
unit (note that (F'™ ,4) is the derived group of the f.c. (n,m)-
group (F,[ 1));

(iii) There exist m mappings hi: F(m) - F (i€{1,...,m}) such
that :
hi(a*b) = hi(a) + hi(b) and hi(a*b) = hi(a)-hi(b),

i.e. hi: (F(m),O,*) - (F,+,-) is a homomorphism of rings;

(iv) If h(a) # 0 for each p€{l,...,m}, then aeF‘™ is an
invertible element.

It is easy to verify from (ii), (iii) and (iv) that the set
Fim) = {aEF(m) | hp(a) # 0 for p€{1l,...,m}}

is an Abelian group with respect to the operation x. We will call
the mappings hi projections. It is easy to verify that the f.c.
(m+k,m)-field induces a f.c. (mt+kt,m)-field. Finally‘we notice
that each field (F,+,-) is a f.c. (2,1)-field. It is sufficient
to put [ab] = a+b, a*b = a.b and h (a) = a.

Analogously to the definition 1, we will define now (ordinary)
(n,m)-field.

oy



23

Definition 2.2. Let (F,+,-) be a field, [ ]: F* - F™ and
x: FF™ - F®_ The ordered triple (F,[ ],*) is called (n,m)-field,
if the following axioms are satisfied:

(i) (F,[ 1) is an (n,m)-group;

(ii) The ordered triple (F",+,%) is a commutative ring with
unit (note that (Fm,+) is the derived group of the (n,m)-group
(F,[ D)3 ' '

(iii) There exist m mappings h,: F® - F (i€{1,...,m}) such

i:
that

h (a¢b) = h,(a) + hy(b) and hi(a*b) = hy(a)-hy(b),

i.e. hi: (Fm,+,*) - (F,+,:) is a homomorphism of rings;

(iv) If hi(a) # 0 for each pe€{l,...,m}, then ae™ is an
invertible element.

“Por (n,m)-field the discussion which followed after the
definition 2.1 also holds.

3. Examples

Example 1. Let F = (, and let ((,I[ 1,) be the additive f.c.
(m+k,m)-group. Since this f.c. group is induced by the f.c.
(m+1,m)~-group, we obtain that the derived group is C(m) with the
operation "+" defined by (2.1). We define an operation % in C(m)
by (2.2), and projections hp: C(m) - C by

m
m, _ p
hp(a1) ii1ai (1 Sp <m. (3.1)
Then ((,{ J,+%) is a f.c. (mtk,m)-field. The proof is analogous
to the proof of proposition 2.1. Indeed that proposition asserts
that ((,I[ 1,,%) is a f.c. (2m,m)-field for k = m.

Example 2. Now we give an example of (2m,m)-field. Let
(F,+,-) be an arbitrary field, and let (F,[ ]) be the (2m,m)-
group defined by

[alb7] = (a,+b,,...,a +b). . (3.2)
Then the derived group is F® with the following operation

(a,r--cra7) * (b ,o,by) = (a,+b,,...,a,+b ). (3.3)
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In F" we define operation * by
(a,reeesap)*(b, ... b)) = (a1.b1,...,am-bm), (3.4)
énd projections
hp(a1,...,am) = aP for p€{1,...,m}.
Now it is easy to verify that (F,[ 1,«) is (2m,m)-field.

Now we will find a connection between the f.c. (2m,m)-field
from the example 1 (or the proposition 2.1.) and the (2m,m)-field
from the example 2 for F = (. Namely we will show that there is
an isomorphism ¢ between their derived groups, their multiplicative
groups with the operation %, and it preserves the projections.

Let us define mapping ¢: ¢m) . cm by

¢(zT) = (a1,...,am),
m
where a_ = 3 zP for 1 < p £ m. Then ¢ is a bijection. Further let
i=1 m
9(w)) = (b,,...,b ) such that b_ = I wf for 1 < p <'m. The
m P j=1 *

m-tuples (a1,...,am) and (b1,...,bm) in Cm are added and multiplied
according to (3.3) and (3.4). Let uT,vfec(m) are such that

uP + ees + uP
1 m

v? I V£ = ap-bp p€{l,...,m}.

ap + bp p€{i,...,m} and

Then according to (2.4) and (2.6) we obtain

m m_ m m m o_
z, +w, =u_ and z, * w, = VT,
and hence

m, m, _ m, _ -
oz ¢w)) = ¢(u)) = (a1+b1,...,am+bm) =

= (aT""'am) + (b.l,...,bm) = ¢(ZI:I) + ¢(w1:\)’
and
m_m, _ _ _
¢z *w,) = ¢(VT) = (a,*b ,...,a b)) =

= @y ee-0ag) (b yeeayby) = 42 0 (W)

Hence ¢ is an isomorphism between their derived groups and their
multiplicative groups with the operation x. Moreover, ¢ preserves

the projections, because
m .
P - mn . _
Lozy hp(z1), i.e. hpo¢ h_.

my,_ _ -
hp(¢(z1)) = hp((a1,..-,am)) =a_ = P

P oo,



Example 3. We define (4,2)-group on ( by
[z,2,2,2,]1 = (2,+2,,2,+2,) 2,,25,25,2,€(.
Then the derived group is (® with the operation
(z,,2,) * (z5,2,) = (z2,+2,,2 +2,),
and we define a multiplicative operation "#" in (® by
(z,,2,)*(z,,2,) = (z1za-z,z“,z1z“+zzza).
Obviously the multiplicatively operation is associative with unit
(1,0) and that the distributive law for multiplication with
respect to the addition is satisfied. Further we define mappings
h ,h,: (* - C by h,(z,,2z,) = z,+iz, and h,(z,,z,) = z,~iz,. Now
one can verify that the axiom (iii) from the definition 2.2 is
satisfied. Further
F} = {(z,,z,) | h,(z,,2,) # 0 or h,(z,,2z,) # 0} =
= {(a+ib,c+id} | a=-d, b=c} U{(a+ib,c+id) | a=d, b=-c}.
One can verify that (21,22)€C2 is an invertible element iff
(z,,2,)£F}. Indeed,
(21122)*(W1,W2) = (1,0)
(at+ib,c+id) .@’+ib’,c’+id’) = (1,0)
yields to a system of linear equations of a’,b’,c’ and d’ whose
main determinant is
-b -c dal,

2 =d =€) _ [ (a+d) 2+ (b-c) 2]{ (a=d) 2+ (b+c) 21,
-d a -b

d c b a

a v e

Thus the element (z,,z,)€(? is an invertible iff (z,,z,)£F: and
hence (C,{ 1,%) is (4,2)-field.

The pair (a+ib,c+id) €(?® can be written as (a+ib)+j(c+id).
Then the multiplication in (2 satisfies the identities i%=j%=-1
and i-j=3j-i. The homomorphisms h, and h2 indeed change j by i and

-i respectively.
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The above example can be generalized for (Zp+1,zp)-field on
(. For example for p=2 the operation [ ] is defined analogously
to (3.2) for m=4. The derived group consists of

(z,+3z,) + k(z,+3z,) Z,,2,,25,2,€(C.
The multiplication is induced by the following identities
i2 = §2 = k2 = -1 and ij = ji, ik = ki, jk = kj.

The homomorphisms h, ,h,,h, and h, are uniquely determined by the
following identities:

h,(3) = i, h1(k) =i,
h,(3) = 1, h,(k) = -i,
h,(j) = -i, h,(k) = i,
h, (3) = =i, h (k) = -1
ard h;(z) = z if z€(.
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BEKTOPCKO BPEJHOCHH TMOJIUbA

KocrtannH TpeHUYeBCKH
Pesume

Bo oBOJj Tpydo Ce BOBeHEeHH MOHMMUTE 3a (n,m)-noJjie U NOTIOJIHO
KOMYyTaTHBHO (n,m)-Tojle, KakKo IpOJOJIXeHHEe Ha TeopHjaTa Ha BEKTOPCKO
BPENHOCHM I'PYNH M TOTHOJIHO KOMYTATHBHM BEKTOPCKO BPEIHOCHH TI'PYIH.
NoToa Ce paneHH HEeKOJNIKY MpHMepH OO BOBEIEHHTE IIOHMH.
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