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BUSY PERIOD AND NUMBER OF CUSTOMERS
SERVED DURING THE BUSY PERIOD IN
A Geo*/Gp/1 QUEUEING SYSTEM

M. Georgieva and V. Bakeva

Abstract

The queueing systems GeoX /Gp/1,i.e. systems with geomet-
rical distributed input stream, group arrivals and discrete service
times, are considered in this paper. Using the method of collec-
tive marks, the distribution of the busy period and the number of
customers serviced during the busy period are determinated.

1. Introduction.

It is known that a geometrical distributed random variable (r.v) has
lack-of-memory property, i.e. if P{T = k} = pg*~! and X is nonnegative
discrete r.v., then the equality

P{T-X<n|T>X}=P{T<n}. (1)

holds. An exponential distribution has the same property and therefore we
obtained an idea to find some analogues between the exponential and the -
geometrical distribution. In this paper we use two probabilistic interpreta-
tions of a probability generating function (p.g.f.) as follows.
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A. The marking of customers (see Kleinrock [3], Obretenov et al.
[4])

Let X be a number of customers which arrive in a queueing system
during an interval (for example [a,b]) and 0 < 2z < 1. We introduce a
marking of customers as follows: each customer can be marked as ”red”
(independently of others) with probability 2 and as ”blue” with probability
1—z. Then P{X = k} is the probability that exactly k customers arrive in
the system during considered interval and P{X = k}z* is the probability
that all k arrived customers are "red”. By the theorem of total probablhty,
the p.g.f. of X

Px(z)= ZP{X = k‘}zk
k=0

is the probability that during the considered interval all arrived customers
are "red”, i.e. no arrival of a ”"blue” customer.

B. The catastrophe process

Let X be a positive integer valued r.v. which represents the time-
interval between two consecutive events from a stream. We consider another
stream which is similarly generated by ar.v. T ~ Geo(1-2), 0 < z < 1 and
it is 1ndependent from the r.v. X. The event from the stream determined
by the r.v. T is called ”catastrophe”. Then we have

= ip{x =k}2* = ip{x = k}P{T > k},
k=1 k=1

i.e.
Px(z)= P{T > X }.

The last relation can be interpreted as follows: An event from the
stream generated by the r.v. X will occur before arrival of a ”catastrophe”
belonging to the stream generated by the rv. T.

These methods are referred together as a method of collective marks.

Remark 1. The second probabilistic interpretation of a p.g.f. is anal-
ogous to the probabilistic interpretation of a Laplace-Stieltjes transform (see
Kleinrock [3], Obretenov et al. [4])

In this paper we determinate the p.g.f. of several characteristics of the
GeoX /Gp/1 queuelng systems. The obtained results are analogous with
the same results in continued case for the M* /G/1 system. In Section 2,
we give a description of a GeoX /Gp/1 system. In Section 3 and Sectlon
4 we find the functional equations for determination of the p.g.f. of the
busy period and the number of customers served during a busy period,
correspondingly. In last section we make a conclusion.
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2. Description of a GeoX /Gp/1 queueing system

Consider a discrete-time single-server queuning system. The time axis
is divided into equal intervals called slots. When the customers arrive, they
are stored in a buffer (queue). The service of a customer is synchronized
to start only at slot boundaries. Without loss of generality we assume
that the length of a slot is equal to a unit time. Slots are numbered as
nonnegative integers so that the k-th slot correponds to the time-interval
(k—1,k),k=1,2,.... Let k= and k* be the two time points immediately
before and after the time k, correspondingly. Through all our considerations
here we assume that:

— a customer completmg service in the k-th slot is con51dered to leave
the system sometime in the time (k~, k); ,

— a customer whose service starts in the (k + 1)-th slot commences the
service in the time (k,k%);

We assume that the stream of input moments is geometrical with a
parameter pp, 0 < po < 1, i.e. the inter-arrival times 73,75, ... are inde-
pendent and identically geometrical distributed r.v.’s defined as follows

P{T=k}=(1-p)* 'po, k=1,2,... (2)

where T is a generic r.v. We will denote this by T' ~ Geo(pp). The last
relation means that during the first k£ — 1 slots there are no arrivals and-
an arrival moment appears just in the following k-th slot, £ = 1,2,...
During each slot, at most one group of customers arrives in the system.
The number of customers in a group is a discrete r.v. Z defined by its
p.gf. ®(z).

If a group arrives in an empty system the service of a customer from
this group starts in the first discrete moment after arrival epoch. If the
server is busy, the customers from the group remain in the queue and wait

.. for service according to the queueing discipline. We assume that the service

time of a customer is given by positive discrete r.v. X having an arbitrary
distribution and p.g.f. Px(z), 0 < z < 1. The described system is usually
abbreviated as Geo(pg)/Gp/1. Such types of discrete-time queuing systems
with absolutely reliable servers are studied, for instance, by Bruneel and
Kim [1], Georgieva [2].

A special case of these systems are systems with ordinary input flow,
which means that there is at most one customer per slot. '
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3. Busy period

Whenever a group arrives in an empty system, it introduces a new
busy period which starts at the beginning of the first slot after its arrival
instant and terminates in the first moment when the system becomes empty
again. It may be noted that the lengths and the positions of the busy period
on the time axis are not influenced by the queueing discipline used in the
system as long as this discipline is work-conserving (see Kleinrock [3]).
Therefore, in order to facilitate the analysis we assume that the last-in-first-
out (LIFO) discipline has been adopted. This means that whenever a group
leaves the system (after the ﬁnishing its service), a customer from the last
arrived group is placed into the service. To an arbitrary group, say Gy, we
associate a period of time which is referred as a sub-busy perlod introduced
by Gy. This period of time starts at the beginning of the service of the first
customer from the group and terminates when the system becomes (for the
first time) free from the groups which have arrived after G;. Evidently, if Gy
is just the group which introduces the busy period then the sub-busy period
introduced by G is, actually, the busy period of the system. This means
that the above two periods are determinated by the same distribution. The
busy period is a positive discrete r.v. B and we denote its p.g.f. as II(z).

Theorem 1. a) The p.g.f. of the busy period B of the GeoX (py)/Gp/1
queueing system satisfies the following functional equation:

I(z) = ®(Px((q0 + poTL(2)))) - (3)

where go = 1 — po, Px(z) is the p.g.f of the service time X and ®(2) is the
p.-g.f. of the number of customers in a group.
b) If poEX - EZ < 1, then the equation (3) has a unique solutzon
II(2), which is a p.g.f. of a stochastzcally bounded r.v.
¢) IfpoEX - EZ < 1, then the first two moments and variance of B
are determinated as follows:

EX-EZ

b= T wEX £ @
1

EB? = T rEX EZ7 (EX)*EZ® + DX - EZ - pi(EX(EZ)) ,
1

DB = (A= pEX EZ) ((EX)ZDZ + DX - EZ+p0qo(EX)3(EZ)3) ]
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Proof: We have already proved that the busy period of the system
and the sub-busy period introduced by a group are determinated by the
same distribution. Therefore, we consider the sub-busy period introduced
by a group and we are going to find its distribution.

Independently of the service process and the input stream, we intro-
duce a supplementary geometrical stream of ”catastrophes” with a param-
eter 1 — 2. Then, by the probabilistic interpretation of the p.g.f., II(2) is
the probability of the event:

There is not a "catastrophe” during the
sub-busy period introduced by a group [

We refer a group as a ”"bad” one if there is a ”catastrophe” during
the busy period introduced by the group. The probability of this event is
1-TI(2). The screened stream of "bad” groups from the input geometrical
stream with a parameter pp is geometrical again, but with a new parameter
po(1 — T1(2)).

During the sub-busy period introduced by a group, there will be no
"catastrophes”, if during the service times of all customers from the group
no "catastrophes” and no "bad” customers arrive. The superposition of the
streams of ”catastrophes” and "bad” groups is a geometrically distributed
flow with a parameter

1-2(1=po(1 -T1(2))) = 1 - 2(go + poll(2))-

Thus, using the probabilistic interpretation of the p.g.f., Px(2(qo + poIl(2))
is the probability of the event that during the service time of a
customer there will be no event of the geometrical stream with parame-
ter p = 1 — z(gp + poll(z)). If the group has exactly k customers, the
probability of the event

There is not event from the superposition of
”catastrophes” and "bad” customers stream
during the service time of all customers

‘ in the group

is [Px(go + poIl(z))}*. But, the number of customers in one group is an
arbitrary r.v. Z with set of values {1,2,...}, defined by its p.g.f. ®(z) and
by the of total probability theorem, we have

() = Y (Px(2(q0 + poTL(2))))* P{Z = k} = $(Px (2(go + polI(2))).
k=1
b) Since ®(Px(z(go + poIl(2)))) is a prbbability, the uneflua,lities
0 < ®(Px(2(q0 + poll(2)))) < 1. (5)
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hold. We denote II(z) = u and for fixed z we consider the function:

p(u) = ®(Px(2(go + pou))).

Since the unequalities (5) are true, ¢ is a mapping from [0, 1] to [0, 1].

For the second derivation of ¢(u) we have ¢"(u) > 0, Vu € [0,1].
This means that ¢'(u) does not decrease in the interval [0,1]. Moreover,
¢'(1) > 0 and we obtain that 0 < ¢'(u) < ¢'(1), Yu € [0,1] and Vz € [0,1].
We denote ¢'(1) = «, and by the theorem of Lagrange for average value,
we have:

lo(u1) = p(u2)| = |¢'(€)] |u1 — u2| < efur — ua, (6)

where 4y, uy € [0,1] and u; < € < us. If @ < 1, then the unequality (6)
implies that ¢ is a contraction on [0, 1] By the fixed point theorem, for
each contraction in a complete metric space, a umquely determinated fixed
point exists. So, there exists u* € [0,1] such that u* = p(u*).

Since ¢(1) = 1, for z = 1, we have II(1) = 1, ie. v =1I(2) = 1, for
z = 1. Therefore, since ¢'(1) < 1, we have pg P (1)®'(1) = poEX-EZ < 1,
and II(z) is a p.g.f. of a stochastically bounded r.v.

c¢) Using the well known relations between the moments of a discrete
r.v. and the derivations of its p.g.f.:

EB=1(1), EB*=1"Q1)+1II'(1).

we obtain (4). - 0
Corollary 1. Let the input stream in’the G’eo/G p/1 system be ordi-

nary, which means that the number of customers in a group is 1. Then,
a) the p.g.f. of the busy period B is a solution of the functional equa-

tion:
II(z) = Px(2(qo + poll(2))) (M)
b) the equation (7) has unique solution II(z), which is a p.g.f. of a
stochastically bounded r.v., if ppEX < 1,

c) the first two moment and the variance of B are determinated as
follows:

EFX
BY= TopEx
1
EB® = A= pEXP ((EX)* - p}(EX)?) (8)
| 1 .

ifpoEX <1. ; ’ .a
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4. Number of customers served during a busy period

Evidently, the number of customers served during a busy period .is a
discrete r.v. C and its distribution is determmated by its p.g.f. Q(2). We
state the following

Theorem 1. a) The function Q(z) satisfies the following functional
equation:

Q(2) = ®(2Px(q + poQ(2))) . (9)

b) If poEX-EZ < 1, then the equation (9) has a unique solutwn Q(z),
which is a p.g.f. of a stochastzcally bounded r.v.

¢) If pEX - EZ < 1, then the first two moment and the variance,of C
are determinated as follows:

EZ
EC=1z poEX - 7710
1
L 2 2 3 _ 2 3
EC" = A—pEX E2p (EZ* + poDX(EZ)’ ~ pyEX(EZ)’)
1
DC = (DZ + pgDX(EZ):* + quOEX(EZ)a) )

(1-poEX -EZ)?

]

Proof: Likewise the length of the busy period, the number of cus-
tomers served during a busy period does not depend on the queueing disci-
pline. Therefore we can apply LIFO discipline again. Independently of the
service process and the input stream we introduce a marking of customers.
Each customer can be marked as ”red” with probability z or marked as
"blue” with probability 1 — 2, 0 < z < 1. Then, P{C = k}z* is the proba-
bility that exactly k customers will be served during a busy period and each
od them will be ”"red”, and Q(z) is the probability that during the busy
period all served customers are "red”. Each group arrived in the system
introduce a busy period and in this period the customers from this group
and the groups arrived after it will be served. We refer to a-group as ”dark
red” if all customers in the group are "red” and during the busy period
introduced by this group all served customers are "red”. Otherwise, this
group is "light red”. Then, @(z) may be considered as a probability that
a group is ”dark red”, and 1 — Q(2) - the probability that a group is ”light
red”: The screened stream of "light red” groups from the input geometrical
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stream with a parameter py is geometrical with a parameter po(1 — Q(2)).
The probability of the event: :

{ There is not a ”light red” group during}

the service of a customer

Px(1 - po(1 = Q(2))) = Px(go + po@Q(2)).

If a group has exactly k customers then (Px(go + po@Q(z)))*z* is the prob-
ability of the event:

All customers from a group are "red” and
during their servicing a "light red” group ;.
has not arrived
But, the number of customers in a group is a r.v. Z with set of values
{1,2,...}, and by the theorem of total probability, we obtain (9). 0

Corollary 2. Let the input stream in the Geo/Gp/1 system be ordi-
nary, i.e. let the number of customers in a group be 1. Then,

a) the p.g.f. of the number of customer C served during a busy period
is a solution of the functional equation:

Q(z) = zPx (0 + poQ(2)) .

b) the equation (11) has unique solution Q(z), which is a p.g.f. of a
stochastically bounded r.v., if pp EX < 1,
c) the first two moment and the variance of C are determinated as
follows: )

1
EB = TonEX
EB* = m (1~piEX + piDX)
DB = T FXF (P DX + pogEX),
ifpoEX < 1. =

5. Conclusions

For the queueing Geo* /Gp/1 systems, i.e. systems with geometrical
distributed input stream, group arrivals and discrete service times, we use
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two probabilistic interpretations to determine the p.g.f of the busy period
and the number of customers serviced during a busy period. The obtained
results are analogous to their Laplace-Stieltjes transforms when M ¥ /G/1
is the considered system (see Obretenov et al. [4]).
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- IIEPAOJI HA 3AYATEHOCT M BPOJ HA KJIMEHTH
OIICJIYKEHM 3A BPEME HA IMEPHNOJIOT HA
3APATEHOCT BO Geo* /Gp/1 CUCTEMMUTE
3A MACOBHO OIICJIY/KYBAIBE

M. I'eoprueBa u B. BakeBa

Peszume

Bo oBoj Tpyx ce pasrmemyBaaT GeoX/Gp/l cucremu T.e. cuc-
TEeMH CO TeOMEeTPUCKU PaclpelelieH Biie3eH IOTOK, ITPYIHO IPUCTUTHY-
Bame Ha KJIMEHTUTE M IUCKPETHO pacHpeleteHO BpeMe Ha OICIYXY-
Bamwe. Co KopHcTemhe Ha IBe BepOjaTHOCHH TOJKyBama Ha I'eHepH-
pauyka (QYHKOWja ONpeleseHd ce pacopelneibuTe Ha NePUOLOT Ha 3a-
paTeHOCT ¥ 6GPOjOT Ha KJIMEHTH ONCIIY:KEHW 33 BpeMe Ha NepuojoT Ha
3adaTeHoCT.
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