MaTtemaTtnuxkn Bunaren ISSN 0351-336X
21 (XXI)
1997 (121-128)
Cronje, Makenonuja

A METHOD OF STRING SEARCH

Octavian C. Dogaru

Abstract

This paper presents a simple algorithm for searching a word
or a pattern of a lenght m characters in a text of n characters. It is
a straightforword method which begins the searching with the word
and the text aligned to the left ends. The number of comparisons
to determine thet the word is or it is not in the text in the worst
unfavourable case, theoretically is of m (n — m + 1). This seems to
be faster than the direct method presented in [9].

1. Introduction

The problem of searching of a word or pattern p[0---m — 1] of m char-
acters in a string s[0---n — 1] of n characters, 0 < m < n, is well studied.
The methods of searching can be classificated in many ways. For example
some of them are direct methods which do not use special tools, others use
special tools, as example the methods based on the precompiling the pat-
tern p as Boyer — Moore [BM], Knuth — Morris — Pratt [KMP] algorithms
and variants of them. The methods based on the idea of precompiling p are
faster than the direct methods but they are more intricated. An example
of direct method is that presented by N. Wirth in [9] and of which core,
presented in the algorithmic language, slight modified, described in [7] is
following

121




122

o= —1;

loop

w=1+1; 7:=0;

while (j < m) and (s(¢+ 5) = p(5)) do j: = j + 1 repeat

until(j = m) or (i = n — m) repeat;

where 7 = m means that ’p is in s” and ¢ = n — m means that ’p is not
in s’. It is a straightforword algorithm. In this text we refer to it as the
DIRECT algorithm. It is O (n.m) time complexity.

Our contribution is to present a straight string search algorithm named
DO and which, in average, seems to be faster than the DIRECT algorithm.
Theoretically it is also O (m.n)time complexity as the direct method. In
the worst unfavourable case the algorithm proposed does m(n — m + 1)
comparisons to determine the first occurence of p in s. The DO algorithm
searches the first occurence of p in s.

2. Main result

The idea of the algorithm proposed is following. Initally the pattern p
and the string s are aligned at the left ends and the process of comparison
of the characters begins and continues repeatedly. If all characters of p
match with the corresponding characters of s then ’p is in s’, this being
the first occurence of p in s and the algorithm stops. If in this process of
searching of p in s there exists a character p;, 0 < j < m—1 of p which is a
mismatch with the corresponding s; character of s then p; is searched in the
rest of the string s that is between the characters s;11, Sj42,...,Sn—m+j
that is the process of searching it is not resumed with po as in the DIRECT
method but it always continues with that character p;, which has produced
the mismatch. The algorithm is built on this idea. If p; is not found in the
substring Sj41-*Sn—m+; then ’p is not in s’ and the algorithm finishes.
If p; is in this substring then let s; be the first this occurence of p; in
this substring (p; = s;). Then one compares the corresponding left and
right neighbours of p; and s;. If they all occur then ’p is in &’ and the
algorithm halts. If p; = s; but in the process of comparison of left and
right neighbours there exists k, 0 < k < m — 1 (exceptind s; = p;) for
which pi # si—j4+x then the process of comparison of the neighbours stops
and the process of searching p; is resumed beginning with the character
sis1, that is, the same p; is searched between s;y1 Siy2 - Sp—m4j-




123

Example. One wishes to see if the pattern p = abed is or is not in the
string s = abzdyyayedzabrrcbyyabed.

The DO method does the comparisons following

abxdyyaycdxabxxcbyyabed

abc

abed

where p; =’c’. In this example n = 23 and m = 4. The character p; which
produces the mismatch in ’¢’. There are necessery 29 comparisons to find
p at the and of s.

This algorithm will be written as a procedure DO in the algorithmic
language, slight modified, presented in [7]. It is the following

procedure DO (p, s, m, n)

//search the word p(0:m — 1) in a string s (0:n—~1),0<m < n. //
//The variable 7 controles the string s, the variable j //
//controles the word p. The Boolean variable f returns true //
//if p is in s, otherwise false. The algorithm search the first //
//occurence of pin s. //

char p(0:m — 1), s(0:n — 1); integer 1, j, k; Boolean f

7:0; f: = false;

while (j < m) and (p(j) = s(3)) do j:= j + 1 repeat

if 1 = m then f:= true; return endif

//the character p(j) # s(j) //

i+ 1

loop

while (: < n —m + j) and (p(j) # s(¢)) do iz =14 + 1 repeat

if ¢t > n —m + j then exit endif;

/ [exists i such that p(j) = s(¢), //

//one tests the neighbours of p(j) and s() //

k:=0;

while (k < m) and (p(k) = s(i — j + k)) do k:= k + 1 repeat

if £ = m then f:= true; return endif

/ fexists p(k) # s(i— 3 + k) //
it=1+1//

until ¢ > n — m + j repeat;
return ’

endDO




124

The exit command in a loop in this algorithmic language means that the
control is transfered to first statement which follows to loop statement that
contains it.

The partial correctness of the algorithm is proved using a proof table.
In this we shall insert a set of assertion between the statements of the
program such that beginning from the preconditions one arrives to the
postconditions. The justifications are based on the applications of logical
equivalence and rules of inference to the sequence of Pascal statements
which are similar with that of the algorithmic language:

1) the assignement rule of inference:

{P(e)} v:=e{P(v)}

2) the conditional rule of inference
iy {PAB}s{Q}
PA~B —Q
{P}if Bthens{Q}

i) {PAB}si{Q}
{P/\ ~ B}SzQ

{P}if B then s, else s,{Q}

3) the loop rule of inference

{inv A B} s{inv}
{inv} while Bdos {invA ~ B}

where P, Q—are propositions, B~is a Boolean expression, inv-is the invari-
ant of the loop and s;, s2, s—are statements.




125

procedure DO (p, s, m, n)

char p(0:m — 1), s(0: n — 1); integer ¢, j, k; Boolean f

{pre:input = p(0---m —1)As(0---n—1)Am >0An>0V
Vje{0---m—1}:p; AVi € {0---n — 1}:s; are characters Aoutput = 0}
j:0; f: = false

while (7 < m) and (p(j) = s(j)) do

{inv:Vh € {0---j—1}:pp=s, ANO L j<m}

Jig+1

repeat
{(Vhe{0---m—1}ipp=spAj=m)V(Vh€{0---j—1}:pp=spAp; #
sj/\OSj<m)} ;
if j = m then f:= true;
{j=mAYhe{0---m—1}:py = sy A f = true}

return

{output = true}

endif

{Vj€{0---m —1}:p; # s; A f = false}

{i =7}

r=73+1

{i>jAj<mAi<n—m+jAf=Talse}

loop

while (1 < n —m+ j) and (p(j) s(i)) do
{inv:VhE{j+l--~i—1}:ph;£si/\pj7ési/\i§n—-m-}—j/\j<m}
=141

repeat
{(31'6{j+1---n—m—|—j}:pj=s,-/\‘v’i€{j—l—l---i—l}:pj;ési)v(\ﬁe
G4l n—mt i # o)}

if it >n—m+ j then

{Vie{j+1---n—m+j}:p; #si A f = false}

exit

endif
{Bie{j+1---n—7n+1}:pj=s,-/\Vhe{j+1---i—1}:pjgésh}
k=0

while (k < m) and (p(k) = s(i — j + k)) do

{inv:Vh € {0---k — 1}:pp = Si—jyn APk = Si—jrk A k < m}

kk+1

repeat

{(Vke {0---m=1}ipr=si_jpu) V(IR € {0---m=1}ipx # sicjpr) AN =
false}

if kK = m then f:=true
{k:m/\VhE{0---m—1}:ph=:si_j+h/\f:true}

return

{output = true}

endif




126

{3ke{0---m—-1}:pp # sijpu A f=falseAi <n—m+ 5}
=141 : :
{it<n—m+i))V@E>n-m+j)}

until ¢ > n — m + j repeat

{i>n—m+jA f=false}

return

{output = false}

endDO

Finally we do a comparison between the DIRECT, DO and BM
[Boyer-Moore] algorithms. The tests have been realized on texts
having n:1 000, 2 000, 4 000, 6 000 characters and words ofm: 5, 10, 15, 25,
50, 100 characters. The Table contains in each column the average times of
five tests for the same n and m. The p’s have been entered randomly. We
used a compatible IBM 386 — PC and the time is expressed in hundredth
of seconds.

Table
n 1000 2000 4000 6000 Average
DIRECT 4.93 6.73 11.93 18:13 ‘ 10.54
DO 3.67 5.43 9.73 12.56 7.85
BM 3.2 4.63 6.97 8.33 5.78

If we notes tpirECcT, tDO, tBM the average times for the DIRECT, DO, BM
algorithms respectively then, from the Table, the relations between them
are
tpirecT = 1.341po; ipo = 1.361pMm
The time of DO algorithm is comparable with the time of BM algo-
rithm for m little (m = 5,10 characters).

References

[1] R.S. Boyer, J.S. Moore, A fast string searching algorithm, Comm
ACM, 20, 10 (1977), 762-772.




127

[2] R. Cole, R. Hariharan, Tighter Bounds on The Exact Complexity of
String Matching, Procc. 33rd Symp. on Foundation of Computer Sci.,
(1992), 600-609.

[3] R. Cole, Tight Bounds on Complexity of the Boyer — Moore string
matching algorithm, STAM J. Computer,23, 5 (1994), 1075-1091.

[4] R. Cole, R. Hariharan, M. Paterson, U. Zwick, Tighter Lower Bounds
on the exact Complexity of String Matching, SIAM J. Computer, 34,
1(1995), 30-45

[5] O.Dogaru, Algorithm of Straight String Search, Romanian Symposium
on Computer Science, ROSYCS, University of lasi, (1993), 172-177.

[6] Z. Galil, A constatnt — Time Optimal Parallel String Matching Algo-
rithm, J. ACM, 42, 4(1995), 908-919.

[7] E. Horowitz, S. Sahni, Foundamentals of Computer Algorithm, Com-
puter Science Press, 1983, 625pp

[8] D. E. Knuth, J. H. Morris, V. R. Pratt, Fast pattern matching in
string, SIAM J. Computer, 6, 2(1977), 323-449.

[9] N. Wirth, Algorithm and Data Structures, Prentice — Hall, N. J.
(1986), 288 pp.




128

EJIEH METO 3A IIPEBAPYBAIBE
HA HVU3A Ol 3HAIIN

Oxrtasuan [I. Horapy

Peszuwme

Bo oBaa cTaTHja ce BOBeAYBa €JHOCTaBeH aJIOPUTaM 3a Ipenos-
HaBambe Ha MYCTPa O 3Hauu (CTPHHIOBH) BO JalleH TekcT. JlaneH e
[0Ka3 Ha AelyMHATa ToUHOCT Ha amropurmor DO (co momom Ha WH-
BapujanT). Ha KpajoT HampaBeHa € KOMIapaTUBHa aHajIW3a Ha eM-
IUPUCKUATE Pe3yJITaTh Ol U3BpllyBamero Ha ajroputmor DO, cunope-
Jed co aaropuTMoT Ha Wirth u co pedepertanmor sa BM. [okaxano e

neka DO pabortu majManky 3a 30 % mo6p30 0l MMPEKTHUOT AJNrOPUTaM
ma Wirth.

West University of Timisoara
Bd. V. Parvan, nr. 4, Timisoara, 1900,

Romania

E-mail: dogaru@info.uvt.ro




