MatemaTnukn Buaren ISSN 0351-336X
19 (XLV)
1995 (117-122)
Cronje, MakenoHmja

EMPIRICAL ANALYSIS OF THE ALGORITHM FOR
FINDING ALL MINIMUM-HOP PATHS
IN NETWORKS

Iskra K. Djonova—Popova

Abstract

A fairly simple, but quite useful extension of Dijkstra’s short-
est path algorithm for finding all minimum-hop paths in networks
was presented in [1]. In order to pursue empirical study of the
previous analytical results, both the rudimentary and the modified
algorithm were implemented upon a simple of randomly generated
networks. The results obtained confirm the relationship concerning
the computational complexity of both algorithms, namely that they
are of same order in their requirement of the computing resources.

1. Introduction

Analyzing an algorithm usually means predicting the resources that the
algorithm requires. Most often the memory used and the computational
time are of primary concern. In general, the time and the storage required
by the algorithm grow with the size of the input that depends on the
problem being studied. In graph algorithms the natural measure of the
input size is the number of vertices and the number of links. Alternatively,
instead of the number of links, the density of the graph could be used.

117

118

Following the notation in [1] let the network be modeled as a graph G,
with a vertex setV = {1,2,...,n} and alink set £ = {1,2, ..., m}. Its
density is represented as a ratio of the number of links in G and the number
of links in the complete graph with n vertices, r = 2m/n(n—1). The graph
contains neither parallel links, nor loops and the length associated with each
link is 1. There is an arbitrary and distinguished node, s, in V called the
source node. The Dijkstra’s algorithm, [2], finds a single minimum-hop
path from s to every other vertex in the graph and produces a minimum-
hop path tree with the source node as a root. Its modified version, [1],
constructs all minimum hop paths. The time complexity of both algorithms
is of the same order.

In the paper, this is verified by computer programs tested upon ran-
domly generated graphs with different input size. Moreover, as a result,
the relationship between the processing time required and the complexity
of the networks is established.

2. The empirical approach

The examination of the behavior of the algorithms required four sep-
arate procedures. The procedure RGCG (Randomly Generated Connected
Graph) constructed randomly generated connected graph without parralel
links and loops for a given input size (n vertices and m links). The basic
data structure used for the graph representation was the adjacency list.
SMHP (Single Minimum Hop Path) found a minimum-hop path from the
source to all the other vertices, and AMHP (All Minimum-Hop Paths) lo-
cated all minimum hop paths. A few additional data structures associated
with each vertex in the graph were needed to store its distance and pre-
decessors. The data structures for storing the predecessors and thus the
memory requirements for AMHP were increased according to the number of
multiple paths obtained. Finally, NCTR (Normalized Computational Times
and Ratios) performed the computation of normalized CPU times for SMHP
and AMHP and the ratios needed for comparasion of both algorithms.

The similar times obtained with different source vertices indicates that
the choice of the source vertex has no significant impact on the results.
Without loss of generality only the results for vertex 1 as a source are
presented here. The machine indepedence of the running times is achieved
by their normalization relative to the time for the smallest input size graph.
The results are summarized in Table 1.

Table 1
n m T TS TA TA/TS NA Ns NA/NS
10 | 910.2 1.0 1.0 | 1.000 9 9 | 1.000
10 | 13 {0.3 1.5 1.5 | 1.000 9 10] 1.111
10 | 18 |04 1.0 1.5 | 1.500 9 14 | 1.556
10 | 23 (0.5 1.5 1.5 | 1.000 9 14 | 1.556
10 | 27 0.6 1.5 2.0 | 1.333 9 17 | 1.889
20 |19 (0.1 5.5 0.5 | 1.000 | 19 | 19| 1.000
20 | 38 (0.2 7.0 7.5 | 1.071 | 19 | 28| 1474
20 | 57 (0.3 9.0 100 | 1.111 | 19 | 36 | 1.895
20 |76 (0.4 105 | 11.5 [1.095 [19 | 46 | 2.421
20 1 95(0.5] 12.0 | 12.5 [1.042 | 19 | 45| 2.368
20 1114[0.6 13.0 | 14.0 | 1.077 | 19 | 57| 3.000
30 | 4410.1) 18.5 19.0 | 1.027 | 29 | 38| 1.310
30 | 871{0.2| 29.0 { 30.0 | 1.034 | 29 | 62| 2.138
30 |13110.3 | 37.5 | 395 | 1.053 | 29 | 73| 2.517
30 |174(0.4 | 46.0 | 47.0 | 1.022 | 29 | 85 2.931
30 [218|0.5| 52.5 | 55.0 | 1.048 | 29 | 114 | 3.931
30 {261|0.6 | 585 | 61.5 | 1.0561 | 29 {141 | 4.862
40 | 7810.1 | 49.0 | 50.5 | 1.031 | 39 | 58 | 1.487
40 [156(0.2 | 83.0 | 84.5 | 1.018 | 39 | 83 | 2.128
40 |234(0.3 | 113.0 [115.5 | 1.022 | 39 (110 2.821
40 [312(0.4 | 139.0 1425 | 1.025 | 39 | 154 | 3.949
40 |390(0.5 | 164.5 |169.0 | 1.027 | 39 | 206 | 5.282
40 1468]0.6 | 183.0 |188.0 | 1.027 | 39 {234 6.000
50 [123]0.1 | 111.5 [112.5 | 1.009 | 49 | 83 | 1.694
50 [245(0.2 | 193.5 [196.5 | 1.016 | 49 | 119 | 2.429
50 1368(0.3 | 279.0 |279.0 | 1.000 | 49 | 169 | 3.449
50 1490(0.4 | 339.5 |345.5 | 1.018 | 49 | 218 4.449
50 |613(0.5 | 396.0 [405.0 | 1.023 | 49 | 311 | 6.347
50 |735|0.6 | 442.0 [450.5 | 1.019 | 49 | 359 | 7.327

The column labels are as follows:

n — number of vertices, m — number of links,

r — density of the graph G,

Ts — normalized computational time for procedure SMHP,
T4 — normalized computational time for procedure AMHP,
Ng — number of minimum - hop paths found in SMHP,
N4 ~ number of minimum - hop paths found with AMHP.

119

120

Diagrams of computational time for AMHP as a function of the number
of vertices for graphs with density » = 0.2 and r = 0.5 are presented on
Fig. 1 and Fig. 2 respectively.

Ta s Ta o
E AT EQ
E 2+ 3£

r=02 r=05

2E 2t . ! 2E &1
E Q¢ €2
8E 1} ° 8E 1
6E 1 ¢ 6E 11

5 1 ¢ . SE
4E 1 ¢ 4E 1
JE 1¢ 3E ¢
2E1.¢ 2E 14
1€ 1 -) .1E 1
8E o ° ' 8t of
6E Of 6E O

SE 0O} SE O
4E O LE O
3JE 0O /) 3E O
2€E 0Ot 2€ O
1E O + *#n 1E O + -

10 20 30 4050 60 & W0 10 20 30 40 5060 80 100

Fig. 1 | Fig. 2

121

3. Conclusions

From Table 1 and Fig. 1 and Fig. 2, it may be concluded that the CPU
time of the modified version of Dijksta’s algorithm to find all minimum-
hop paths in a network grows equally with the one needed for Dijkstra’s
algorithm. On the other hand its memory requirements are larger only for
the number of additional paths found. Hence, both algorihms have similar
performances with respect to the time and the storage used.

Consequently, i any particular application that needs a better insight
in paths from the source, AMHP could be iised without concern that the
time for processing the network will be overcome.

Acknowledgment: The author extends his appreciation to Z. Zograf-
ski for the helpful comments in his review of [1].

References

[1] Djonova—Popova K. I., Popov, B. O.: Finding All Minimum-hop Paths
in Networks, Bulletin de la Société des mathematicien et des informati-
cien de Macedoiné, 16, 99—104, 1992

[2] Dijkstra, E.: A note on two problems in connection with graphs,
Numer. Math. vol. 1, 269-271, 1959

122

EMIIMPUCKA AHAJIM3A HA AJITOPUTMOT
 3A OIPENYBAE HA CUTE IATUIIITA CO
MUHUMAJIEH BPOJ HA JJMHUU BO MPEKU

Hckpa K. lloroBa—IlonoBa
Pezunuwme

AnropuTMOT 3a onpenyBame Ha CUTE NATHIITA CO MUHMMaJeH 6poj
Ha JUHMH, [1}, OpeTcTaByBa eHHOCTaBHa, HO KOpPHMCHa MOIM(pUKAIMja
Ha aiaroputMoT Ha Dijkstra 3a Bajkyc mar. IlpakTuumara peamusamudja
Ha OBOj aJIrOpUTaM, KaKO ¥ Ha aiaroputMoT Ha Dijkstra Geme TecTm-
PaHa Bp3 CIy4YajHO IeHEPHPAHW MPEXH CO Pa3IAYHa KOMILIEKCHOCT.
MepeHuTe BpeMuma I'M DOTBPAYBaaT AHAJIUTHYKK NOOMeHMTE pe3yl-
TaTH IeKa epUKacCHOCTa Ha JBeTe NOCTANKH € NPUOIMKHO elHaKBa.

Centar za energetika i informatika,
MANU

Krste Misirkov 2

91000 Skopje

Makedonija

