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CANONICAL GROUPOIDS WITH 2™ -y" = oy

G. Cupona*, N. Celakoski** and B. Janeva***

Abstract

We give a convinient description of free objects in the variety
. of groupoids with the axiom z™ - y" = zy. E

1. Main Results

First we state neccssary preliminaries.

2k - 2)!

Among all the possible E(T(l;_——f))_' k-th groupoid powers, here z* is
defined as follows: ez, o= gk.g (1.1)
and this is the meaning of the powers in the axiom

g™yt =y (1.2)

of the variety of groupoids 2/(™").

Throughout the paper, we assume that F = (F,-) is an absolutely free
groupoid with a given basis B. A mapping z — P(z), from F into the
family of finite nonempty subsets of F is defined as follows:

P(b) = {b}, P(tu)= {tu% U P(t)U P(u), (1.3)
for any b € B, t, u € F. (We say that P(u) is a part of u.)

We say that a groupoid R = (R, ) is a U™ -canonical groupoid iff
the following conditions hold:

a) BCRCF;b)(Vt,ue F)(tlue R=>t, u€ R & txu=tu)

c) R is free in U™ with the basis B.

The following statement is a special case of the main result in the paper
[5, Theorem 1].

Theorem 1. Assume that '
(m,n) € {(4,7):(i=1 or j=1) & i,jen}uU{(2,2)}.}

! N is the set of positive integers; Ng = NU {0} is the set of nonnegative integers.
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Then, there exist two transformations £, 1 on F such that the structure
= (R, o) defined by:
BCR& (Vt,ue R)(tu € R & &(t) =1t, n(u)_u),
(Vt, u € R)t e u = £(t) n(u).
is a U™ _canonical groupoid.
Now, we shall state the main results in this paper.

Theorem 2. If m,n €N are such that m,n > 2 and m + n > 5, then
there ezist mappmgs £,n: Fxng — F such that a U™™ -canonical groupozd
= (R, e) is defined as follows:

R={ve F:(Yt,u€ F,p,g > 0)(t,p+ 1) -n(u,q+ 1) ¢ P(v)}
vw, if vw € R
&(t,p) e n(u,q), if vw=¢&(t,p+1) n(u,qg+1).

Theorem 3. The class of free objects in U™ is hereditary iff n = 1
or(m=1, n=2).

. (Vv,wER)vow:{

2. Some Properties of F and (™"

In the proof of Theorem 2 we shall use another three kinds of groupoid
powers: z(5?) 2(P) 2Pl We define them below, assuming that k, n, m, p,
qaremtegerssuchthatkz 1,n2>3, 2§m<n p,q 2> 0:

B I CUIS

2O = g g(PHD) = 20, o

20 = g, gl = g letd = m[p+1]$[p] 2Pty -1,
where ryz = (2y)z, zy20=1zy, zyzp+1l= (wy zp)z
It is clear that (z(FP))k0) — gkpta)
and it is easy to show that the following identities hold in 2/("™™):
g(mP)y (b)) = g0 (form,n>1, p>0), (2.1)
P =P (form=n>3, p> 0), (2.2)
2Pl = 2("P) (for2<m < n, p>0). (2.3)

Some properties of the groupoid F' shall be stated below. First, note
that F is injective’ groupoid, and that the basis B of F consists of the set
of primes? in F. As a consequence, we obtain that the mapping z P(z),
is well defined by (1.3).

2 A grupoid G is injective iff (Vo,y,u,v € G)(zy =uwv =>z =u, y = v).
3 An element a € G is prime in G iff (Vz, y € G)a # zy.
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We denote by ||: & — |z| the homomorphism from F' into the additive
groupoid of positive integers which is an extension of the mapping B — {1}.
Thus: . ,

bl =1, [tu] = |¢] + |u], | (2.4)
for any b € B, t, u € F. (We say that [t| is the lenght of t.)

By [5, (2.4)], the definitions of groupoid powers and (2.4) it follows
that,for: > 1, k>2,n>3,2<m<mn,pq2>0,the followmg relations
hold in F*:

ll’(”“)l > |$(p)| 2P| S |alPl) (2:5)

By the injectivity of F and (2.5) we obtain the fo]lowmg propertles

B it (26)
kpte) = (k7)o g = g0, (2.7)
Jhtin) = (k) o = g =0, t=uy (2.8)
£+ = o) =y p= gy (2.9)
flottl = glotll oy = g p=gq; - (2.10)
tm?) =ld o p=g=0; (2.11)

where¢,j > 1, k2> 2,p,q>0t,ue F.

By (2.7) it follows that for a given u € F and k > 1, there exists at
most one pair (¢, p), such that u.= t(¥*+1_If such a pair (t, p) exists, then
we write (u)y = p, t = w*7), and if (u)g = 0, then t = u = u¥=), If k
is fixed, we shall often write .'):(7’) (z), () instead of =(¥®) (2)y, :c(“ -
respectively. In the same sence, by (2.9) and (2.10), for a glven u€ F one
defines (u), [u ]respectlvely

3 Proofs of Theorems

As we mentioned in Section 1, Theorem 1 is a spec1a.l case e of Theorem
1in [5]. Therefore we shall merely define the corresponding transformations
£ and 7, without entering the proof in details.

Casem =1n=1. £(u) = n(u) = u, for every u€F,

Therefore F is the U1 1)-canomcad groupoid.

Casem =1, n > 2. {(u) = u, foreveryueF

,ifufth, teF, k>2,
n(w) = { k
t, fu=t°", k>2, teF.
Casem > 2, n=1. First, for 2z € F, p > 0, define f(z,p) by:

f(z,0)=2, f(z,p+1) =2 f(z,p)m.
Then: n(u) = u, for every u € F, and
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w, if (VLEF,p>0u# ft,p+1),

E(u)={t, if u=f(t,p+1).
Casem =n = 2.
RN , if (Vt€ Fyu#t®
= (B e P

We begin the proof of Theorem 1, assummg that m>2,n>2, m+n > 5.
First of all, the identity (2.1) suggests to define £ and 7 by:

&(t,p) = &P, n(t,p) = VP (3.1)
having in mind the definition of (¥} given in Section 2.

The next proposition implies that the definition (3.1) is "successful”
only for m > n > 2.

Proposition 3.1. Let m +n > 5, m >9n > 2, and R(mn)(= R) be
the subset of F defined by:

R={ve F:(Vt,ue€ F)((t)m(u)n #0=>tug¢ P(v))}. (3.2)
For v, w € R, let v e w be defined by:

vw, if vw€ R,
tmp) ¢ (ma) i g = g(maptl) g = g (g tl)

Then : -
(7)) R=(R,e) is a grupoid, B coincides weth the set of primes in R and
(it is the least generating set for R.
(i) If G €U'™™ and X\: B — G is a mapping, then there ezzsts a umque
homomorphzsm ¢: R — G which extends A.
(itd) Re U™ iffm >n > 2.

(iv) If m > n > 2, then R is U free groupoid with a (unique) basis B.

Proof. (i) From (3.2), (3.3) and (2.7) it follows that e is a well-defined

operation on R. The assertion for B follows from the fact that B is the set

of primes in F ‘and it is the least generating set for F.

(it) Let ¥: F — G be the homomorphism which extends A, and let
¢: R — G be the restriction of ¥ on R. By (3.3), G € U(m ") and
(2.1), it follows that ¢: R — G is a homomorphism.

(i4i) If t € R, i > 1, then we denote by t¢ the i-th power of ¢ in R, i.e.
th =1ttt = (1) e t.

(1) Letm>n>2 Then: ti = t*, for each i:1 < i < m. (IfaEB then

a’ = a*, for every 1 > 1. ) Hence for t, u € R, we have:

(t7) o (u?) = t™ e u® = t{m]) ¢ (1) = 4(m0) ¢ y(mO) _ gy

ie. Relylmm),
(11.2) If 2 < m =mn, and a € B, then we have:

vow:{ (3.3)
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((@™)7)ea" = (a*a"n—2)ea™ =d’a"n—1+# a"*,
and thus, R ¢ Y™™,
(#1i.3) Let 2 < m < n, and a € B. Then (a®)? = a®*la™n —m ~1, and
therefore
(af)e(a™)?=a™(@"t'a"n—m—1)#aea” =aa™.
This completes the proof of part (m).
As a consequence of (i), () and (4ii) one obtains that (iv) is true. DO
The following property proves Theorem 2 in the case m = n > 3.
Proposition 3.2.. Let n > 3 and let S,(= S) be the subset of F
defined by: . ‘ ;
S ={ve F:(¥t, ue F)({t)(u) > 0= tu ¢ Pv)). (3.4)
For v,w € § define vew by: . o
‘ vw, if vwe S
vew = {

£0) 0 @ | if g = 1P (3.5)

Then S = (8, e) is a U'™™ -free groupoid with the unique basis B.

Proof. B

1) Since |tP+1)| > |¢{P)|, we obtain S = (5, ) is a well-defined groupoid.
It is clear that B coincides with the set of primes in S and it generates
S. '

2) Now we shall prove that S € U(™"), :

Let v, w € § be such that 0 < p < (v),0 < ¢ < (w), v = 7, w.= ulD),
Then . :
vl =12, 0 =12 ol = 2P 9 = gl

In the same way we obtain that: w? = = u(a+1) Therefore:
(v7) o (w}) = t{PH1) o ! (a+1f _ t(”) oul? = peuw,
i.e. we obtain that § € Y(mm) 4
3) Let G = (G,-) € U™™  X\: B — G be a given mapping and ¢: F — G
the homomorphism which extends A. Then (using the fact that the
identity (2.2),1.e. (P = 2{(P) holds in G) we obtain that the restriction
pofypon S ie ¢S — G,is a homomorphism,

From 1), 2) and 3) it follows that § is a 2/(™™)-free groupoid with the
basis B, and that B coincides with the set of primes in 5. o

It remains the case 2 < m < n. Bellow we shall write z(P), (z) instead
od z{™?P) | (z),,-respectively.

. 4 We note that, if G € U(®?2) | then the identity 2? = z* is true in G for every k > 2
and every groupoid k-th power among all possible groupoid k-th powers.
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Proposition 3.3. Let 2 < m < n and let the structure T = (T, ) be
defined as follows:

T = {v e F: (V4 uer,q>0)((t)[ 1¢0=>fw'¢P(v)),
andforv,’weF' vw, foweT
”‘W;{gm.dﬂ if v=tPH) = glet,

Then T is a (™™ free groupozd with the unique basis B, where B comczdes
with the set of primes in T.
Proof.

1) By the same reasoning as for the proof of the Proposition 3.2, T is
a well defined groupoid, B is the least generatmg set of T', and it
coincides with the set of primes in T'.

2) By (2.11), (v)[v] = 0 for every v € F, and this 1mphes that v} = vi,
forevery v € T and 1 < i < m. Moreover, for [v] = 0, we have:
Pt =M ew = 0™ L 0 = 0",
In the case [v] = p + 1, v = tlP*1 we have:

v:n-{-l = o™ o tlPT = yilPl — flp+1]4lp] ,

B e N R e

Therefore:
(v e (wh) =v™ e ult* = peuld = yew,
where [w] = ¢, w = ul9.
This shows that T € Y™™,
3) In the same way as in the proof of Proposition 3.2 one shows that T
is U(™ ") free with the (unique) basis B. O

Proposition 3.1-3.3 complete the proof of Theorem 2 Here, we define
£ and 7 by:
{(z,p) = z{mp), nz,p) = (P} for m > n >2,

($7p) = 77(3%1’) = -'l:(p), fOI‘ m=n Z 3,

6(1"’17) = x(m,p)’ 7)(93,1’) = x[P], for 2 <m<mn.
It remains to prove Theorem 3. We note that the part of the assertion

in Theorem 3 for (m,n) € {(i,7):i=1or j = 1} U {(2,2)} is a special case
of [5, Theorem 2}, and therefore we shall prove the following:

Proposition 3.4. If m,n > 2, m+n > 5, then the class of U™™) _free
groupoids is not hereditary.

Using the fact that, if Q is a free object in (™™ then the set of primes
in @ is the basis of Q, we obtain that Proposition 3.4 is a consequence of
the following: ,
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Proposition 3.5. Let m>2, n>2, GeU(™™ and acG. If Q is the
subgroupoid of G generated by {a™,a"}, then there are no primes in Q.

Proof. Let us first define a sequence {f;: i > 2} of transformations on

G. Namely, v m
fz(il?) = a™a" , fk+1(m) - (fk(flf)) ™.

Then, a*F = fi(a) = (fr-1(a))"a™ is not prime for any k > 2. Thus,
neither a™, nor a™ is a prime in Q. Therefore there are no primes in Q. O

4. Relations between /(™) 14(m:1) 74(1,n)

By the definition of the variety (™™ it is clear that
u(mvl) N u(lvn) g u(m9") . ' (4'1)

It is natural to seak for the aniswer of the question: what are the cases
for which equality holds in (4.1)? The answer is given in the following,.

Proposition 4.1. The equality holds in (4.1) in the following three
cases only:

a) m=1, b n=1 ¢ m=n=2

Proof. It is clear that the equality holds in (4.1) for each of the cases
a), b), and it is easily shown that the equality holds in the case c), as well
(see, for example, [3, 1.1 and Remark]). In any other case, the equality
UtmD Ny = y(md) n4(1.4+1) holds, where d = ged(m — 1, n — 1) (the
greatest common divisor of mm — 1 and n—1). In this case it is easy to show.
that U(m'")-qallonical groupoid does not belong to the variety (™1, QO
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KAHOHMUYHU FPYIIONIN CO z™y" = zy

I'. YUynora*, H. llerakocku™* u b. Jamena™*

PezumMme

Bo 0BOj TPy ce pasrieAyBaaT MHOryoSpasmjaTa MPyIOMAH, ONpeNeieHN CO -
akcmoMa off obamkoT £™y" = ry, KoM WITO ce o3Hauenu co U™, JobueHn e
morofeH OOMC Ha cjxoboxeH rpynoni co 6aza B, a umeno rpymoua R = (R, x)
KOJIITO I'Ml 3a0BOJIyBa CJieJHUBE YCJIOBH:

a) BCRCF; 6) (VM,u€ F)(tu € R=1t, uER&t*u*tu),
B) R e cao6ogen so U™ co Basa B;

R ce Haperysa U™ ") -kanonuues rpymona. Co F = (F, ) ce 03HauyBa allCco-
JyTHO cnoboaumoT rpynoun co 6asa B.

Jloka)kaHM ce cJeQHNBE TEOpeMU:

Teopema 1. Hexa

(m,n) €{(2,7): (1=10rj=1)&i,j EN}U{(2,2)}.

Tozaw nocmojam dee mpancopmayuu &, wa F maxeu wmo R = (R, e) onpe-

desen co:
BCR& (Vt,u€ R)(tu € R <> £(1) =1, n(v) =),
(Vt,u € R)tou=£(1) n(u).

e U(™P) _xanonuuen zpynoud.

TeopeMa 2. Axo m,n €N ce maxeu wmo m,n > 2 u m +n > 5, moeaw
nocmoyam npecauxysana &, n : FxNg — F maxeu wmo Il("‘ ")—nauouuuuuom zpynoud

= (R, o) e defunupan co:

R={ve F:(Vt,u € F,p,q > 0)(t,p+1) - n(u,g +1) € P(v)}
vw, axo vw € R

&(t,p) e n(u, q), axo vw =E(t,p+1)-n(u, ¢+ 1).

(Vo,w € Rjvew =

IMoxpaj moa dadena e xapaxmepusayuja Ha Muozyobpasujama U™P) | maxeu
WMo x.Aacama c20600nu objexmu e nacaedna. Hmeno doxaxcana e:
TeopeMa 3. Kaacama caobodnu objexmu eo Il("‘ ") e nacaedna axxo n =1
uau (m=1,n = 2).
- Ha xpajom, noxaxcaro e dexa pasencmeomo
u(m 1) A y(tin) - gylm,n)

gaxncu akko m =1 uaun =1 uaum=n = 2.
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