CONSTRUCTIONS OF (2, n)-VARIETIES OF GROUPOIDS FOR n = 7, 8, 9

Lidija Goračinova-Ilieva and Smile Markovski

Dedicated to Prof. Dr. Kazimierz Glazek

ABSTRACT. Given positive integer n > 2, an algebra is said to be a (2,n)-algebra if any of its subalgebras generated by two distinct elements has n elements. A variety is called a (2,n)-variety if every algebra in that variety is a (2,n)-algebra. There are known only (2,3)-, (2,4)- and (2,5)-varieties of groupoids, and there is no (2,6)-variety. We present here (2,n)-varieties of groupoids for n=7,8,9.

1. Introduction

The notion of variety of algebras having the property (k,n) was given in [4] and equationally defined classes of cancellative groupoids having the property (2,4) and (2,5) were considered there. This notion was generalized in [1], where it was shown that the condition of the cancellativity is superfluous, that is, any variety of groupoids with the property (2,n) is a variety of quasigroups.

Let k and n be two positive integers and $k \leq n$. An algebra A is said to have the property (k,n) if every subalgebra of A generated by k distinct elements has exactly n elements. We also say that A is a (k,n)-algebra. A class $\mathcal K$ of algebras is said to be a (k,n)-class if every algebra in $\mathcal K$ is a (k,n)-algebra. A variety is called a (k,n)-variety if it is a (k,n)-class of algebras.

Trivially, the variety of Steiner quasigroups $(xx = x, xy = yx, x \cdot xy = y)$ is a (2,3)-variety. It is the unique variety of groupoids with the stated property, and the same holds for the (2,4)-variety $(x \cdot xy = yx, xy \cdot yx = x)$ given by Padmanabhan in [4]. He has also constructed two (2,5)-varieties. One of them is commutative $(xy = yx, x(y \cdot xy) = y, x(x \cdot xy) = y \cdot xy)$, while the other one $(x \cdot xy = y, xy \cdot y = yx)$ consists of anticommutative quasigroups. These two varieties together with the variety whose defining identities $(x \cdot xy = yx, xy \cdot y = x)$ are dual to the identities of the preceeding variety are the only (2,5)-varieties of groupoids. The non-existence

²⁰⁰⁰ Mathematics Subject Classification: 03C05, 20N05. Key words and phrases: (2, n)-algebra, quasigroup, variety.

of a (2,6)-variety can be deduced from the correspondence between the (k,n)-varieties and Steiner systems S(k,n,v) [1].

Here we present (2, n)-varieties of groupoids for n = 7, 8 and 9. Their construction is given in Sections 2, 3 and 4 respectively. It is an open problem the existence of (2, n)-varieties for $n \ge 10$, as well as the answer of the question whether the set of integers $\{n \mid \text{There exists a } (2, n)\text{-variety of groupoids}\}$ is finite.

2. A construction of (2,7)-variety of groupoids

We use the fact that any member of a (2, n)-variety of groupoids is a quasigroup, i.e., the choosing of the defining identities of the (2,7)-variety \mathcal{V}_7 (as well as the varieties \mathcal{V}_8 and \mathcal{V}_9 in the next sections) is made in a manner that enables a variety of quasigroups to be obtained.

THEOREM 2.1. Let V_7 be a variety of groupoids, defined by the identities:

(1)
$$xy = yx$$
, (2) $x(x \cdot xy) = y$, (3) $xy \cdot (y \cdot xy) = y(x \cdot xy)$

Then V_7 is a (2,7)-variety of quasigroups.

PROOF. Let (G,\cdot) be arbitrary groupoid in \mathcal{V}_7 and $a,b\in G$. Since $ab=ac\Longrightarrow b=a(a\cdot ab)=a(a\cdot ac)=c,\ x=a\cdot ab$ is the unique solution of the equation ax=b. By commutativity ax=xa we have that (G,\cdot) is a quasigroup.

Next we show that the following identities also hold in (G,\cdot) . (The commuta-

tivity will not be pointed out when used.)

$$(4) xx = x, (8) (x \cdot xy)(y \cdot xy) = xy,$$

(5)
$$x \cdot x(y \cdot xy) = y(x \cdot xy),$$
 (9) $(x \cdot xy) \cdot x(y \cdot xy) = y \cdot xy,$

(6)
$$x \cdot y(x \cdot xy) = y \cdot xy$$
, (10) $(x \cdot xy) \cdot y(x \cdot xy) = x$,

(7)
$$xy \cdot x(y \cdot xy) = x$$
, (11) $x(y \cdot xy) \cdot y(x \cdot xy) = xy$.

Namely, we have the following transformations:

$$xx \stackrel{(2)}{=} x(xx \stackrel{(}{\times} (xx \cdot (xx \cdot x))) \stackrel{(3)}{=} x(xx \cdot x(x \cdot xx)) \stackrel{(2)}{=} x(xx \cdot x) \stackrel{(2)}{=} x;$$

$$x \cdot x(y \cdot xy) \stackrel{(3)}{=} x(xy \cdot (x \cdot xy)) \stackrel{(3)}{=} (x \cdot xy) \cdot x(x \cdot xy) \stackrel{(2)}{=} (x \cdot xy)y;$$

$$x \cdot y(x \cdot xy) \stackrel{(5)}{=} x(x \cdot x(y \cdot xy)) \stackrel{(2)}{=} y \cdot xy;$$

$$xy \cdot x(y \cdot xy) \stackrel{(3)}{=} xy \cdot (xy \cdot (x \cdot xy)) \stackrel{(2)}{=} x;$$

$$(x \cdot xy)(y \cdot xy) \stackrel{(2)}{=} (x \cdot xy)(x(x \cdot xy) \cdot xy) \stackrel{(7)}{=} xy;$$

$$(x \cdot xy) \cdot x(y \cdot xy) \stackrel{(3)}{=} (x \cdot xy)(xy \cdot (x \cdot xy)) \stackrel{(3)}{=} xy \cdot x(x \cdot xy) \stackrel{(2)}{=} xy \cdot y;$$

$$(x \cdot xy) \cdot y(x \cdot xy) \stackrel{(5)}{=} (x \cdot xy) \cdot x(x(y \cdot xy)) \stackrel{(3)}{=} (x \cdot xy) \cdot x(xy \cdot (x \cdot xy)) \stackrel{(7)}{=} x;$$

$$x(y \cdot xy) \cdot y(x \cdot xy) \stackrel{(3)}{=} (xy \cdot (x \cdot xy))(xy \cdot ((x \cdot xy) \cdot x(y \cdot xy))) \stackrel{(3)}{=}$$

$$\stackrel{(9)}{=} (xy \cdot (x \cdot xy))(xy \cdot ((x \cdot xy) \cdot x(y \cdot xy))) \stackrel{(7)}{=} xy.$$

Therefore, the multiplication table of any subquasigroup of a quasigroup in V_7 , generated by the elements x and y ($x \neq y$), is the following one:

	x	y	xy	$x \cdot xy$	$y \cdot xy$	$x(y \cdot xy)$	$y(x \cdot xy)$
x	x	xy	$x \cdot xy$	y	$x(y \cdot xy)$	$y(x \cdot xy)$	$y \cdot xy$
y	xy	y	$y \cdot xy$	$y(x \cdot xy)$	\boldsymbol{x}	$x \cdot xy$	$x(y \cdot xy)$
xy	$x \cdot xy$	$y \cdot xy$	xy	$x(y \cdot xy)$	$y(x \cdot xy)$	\boldsymbol{x}	y
$x \cdot xy$	y	$y(x \cdot xy)$	$x(y\cdot xy)$	$x \cdot xy$	xy	$y \cdot xy$	\boldsymbol{x}
$y \cdot xy$	$x(y \cdot xy)$	\boldsymbol{x}	$y(x \cdot xy)$	xy	$y \cdot xy$	y	$x \cdot xy$
$x(y \cdot xy)$	$y(x \cdot xy)$	$x \cdot xy$	\boldsymbol{x}	$y \cdot xy$	y	$x(y \cdot xy)$	xy
$y(x \cdot xy)$	$y \cdot xy$	$x(y \cdot xy)$	y	\boldsymbol{x}	$x \cdot xy$	xy	$y(x \cdot xy)$

In order to complete the proof, it suffices to show that the elements $x, y, xy, x \cdot xy, y \cdot xy, x(y \cdot xy), y(x \cdot xy)$ are distinct:

$$x = xy \implies xx = xy \implies x = y$$

$$x = x \cdot xy \implies xx = x \cdot xy \implies x = xy$$

$$x = y \cdot xy \implies xy = (y \cdot xy)y \implies xy = x$$

$$x = x(y \cdot xy) \implies xx = x(y \cdot xy) \implies x = y \cdot xy$$

$$x = y(x \cdot xy) \implies y(y \cdot xy) = y(x \cdot xy) \implies y \cdot xy = x \cdot xy \implies x = y$$

$$xy = x \cdot xy \implies y = xy$$

$$xy = x(y \cdot xy) \implies y = y \cdot xy$$

$$x \cdot xy = y(x \cdot xy) \implies xy = y \cdot xy$$

$$x \cdot xy = x(y \cdot xy) \implies xy = y \cdot xy$$

$$x \cdot xy = y(x \cdot xy) \implies x(x \cdot xy) = x(y(x \cdot xy)) \implies y = y \cdot xy$$

$$x(y \cdot xy) = y(x \cdot xy) \implies x(y \cdot xy) = xy \cdot (y \cdot xy) \implies x = xy.$$

3. A construction of (2,8)-variety of groupoids

Theorem 3.1. Let V_8 be the variety of groupoids, defined by the identities:

(1)
$$x \cdot xy = xy \cdot y$$
, (2) $x \cdot yx = xy \cdot x$, (3) $x(y \cdot yx) = y$.

Then V_8 is a (2,8)-variety of quasigroups.

PROOF. First we show that the following identities are satisfied by any \mathcal{V}_8 -groupoid:

(4)
$$x(x \cdot xy) = yx$$
, (16) $(x \cdot xy) \cdot xy = yx$, (5) $xx = x$, (17) $xy \cdot (yx \cdot y) = yx$, (6) $xy \cdot yx = x$, (18) $(y \cdot yx) \cdot xy = x$, (7) $(xy \cdot x)x = y$, (19) $(xy \cdot x) \cdot xy = y \cdot yx$, (8) $x(xy \cdot x) = yx \cdot y$, (20) $(yx \cdot y) \cdot xy = xy \cdot x$,

$$(9) \quad x(yx \cdot y) = y \cdot yx, \qquad (21) \quad (x \cdot xy)(y \cdot yx) = xy \cdot x,$$

$$(10) \quad (x \cdot xy)x = yx \cdot y, \qquad (22) \quad (x \cdot xy)(xy \cdot x) = x,$$

$$(11) \quad (y \cdot yx)x = x \cdot xy, \qquad (23) \quad (x \cdot xy)(yx \cdot y) = xy,$$

$$(12) \quad (yx \cdot y)x = xy, \qquad (24) \quad (y \cdot yx)(x \cdot xy) = yx \cdot y,$$

$$(13) \quad xy \cdot (x \cdot xy) = y \cdot yx, \qquad (25) \quad (yx \cdot y)(x \cdot xy) = y,$$

$$(14) \quad xy \cdot (y \cdot yx) = yx \cdot y, \qquad (26) \quad (xy \cdot x)(yx \cdot y) = x \cdot xy,$$

$$(15) \quad xy \cdot (xy \cdot x) = y.$$

Namely, we have:

$$x(x \cdot xy) \stackrel{(3)}{=} y(x \cdot xy) \cdot (x \cdot xy) \stackrel{(1)}{=} y \cdot y(x \cdot xy) \stackrel{(3)}{=} yx;$$

$$xx \stackrel{(4)}{=} x(x \cdot xx) \stackrel{(3)}{=} x;$$

$$xy \cdot yx \stackrel{(4)}{=} xy \cdot (x \cdot (x \cdot xy)) \stackrel{(3)}{=} x;$$

$$(xy \cdot x)x \stackrel{(2)}{=} (x \cdot yx)x \stackrel{(2)}{=} x(y \cdot xx) \stackrel{(1)}{=} x(y \cdot yx) \stackrel{(3)}{=} y;$$

$$x(xy \cdot x) \stackrel{(2)}{=} x(x \cdot yx) \stackrel{(1)}{=} (x \cdot yx) \cdot yx \stackrel{(4)}{=} yx \cdot (yx \cdot (yx \cdot (x \cdot yx)))$$

$$\stackrel{(2)}{=} yx \cdot (yx \cdot ((yx \cdot x) \cdot yx)) \stackrel{(1)}{=} yx \cdot (yx \cdot ((y \cdot yx) \cdot yx) \cdot yx) \stackrel{(7)}{=} yx \cdot y;$$

$$x(yx \cdot y) \stackrel{(8)}{=} x \cdot x(xy \cdot x) \stackrel{(2)}{=} x \cdot x(x \cdot yx) \stackrel{(4)}{=} yx \cdot x \stackrel{(1)}{=} y \cdot yx;$$

$$(x \cdot xy)x \stackrel{(2)}{=} x(xy \cdot x) \stackrel{(8)}{=} yx \cdot y;$$

$$(y \cdot yx)x \stackrel{(4)}{=} x(x \cdot x(y \cdot xy)) \stackrel{(3)}{=} x \cdot xy;$$

$$(y \cdot yx)x \stackrel{(4)}{=} x(x \cdot x(y \cdot xy)) \stackrel{(3)}{=} x \cdot xy;$$

$$(y \cdot yx)x \stackrel{(4)}{=} x(x \cdot x(y \cdot xy)) \stackrel{(1)}{=} (xy \cdot yy) \stackrel{(1)}{=} (x \cdot xy)y \stackrel{(1)}{=} y \cdot yx;$$

$$xy \cdot (x \cdot xy) \stackrel{(4)}{=} (y(y \cdot yx))(y \cdot yx) \stackrel{(1)}{=} (x \cdot xy)y \stackrel{(1)}{=} y \cdot yx;$$

$$xy \cdot (y \cdot yx) \stackrel{(4)}{=} (y(y \cdot yx)) \stackrel{(4)}{=} yx;$$

$$(x \cdot xy) \cdot xy \stackrel{(1)}{=} x(x \cdot xy) \stackrel{(4)}{=} yx;$$

$$(x \cdot xy) \cdot xy \stackrel{(1)}{=} (xy \cdot (x \cdot xy)) \cdot xy \stackrel{(2)}{=} ((xy \cdot x) \cdot xy) \cdot xy \stackrel{(1)}{=} xy \cdot x;$$

$$(y \cdot yx) \cdot xy \stackrel{(1)}{=} (xy \cdot (x \cdot xy)) \cdot xy \stackrel{(2)}{=} (y \cdot yx) \cdot xy \stackrel{(1)}{=} xy \cdot x;$$

$$(x \cdot xy) \cdot xy \stackrel{(1)}{=} (xy \cdot (y \cdot yx)) \cdot xy \stackrel{(2)}{=} xy \cdot ((y \cdot yx) \cdot xy) \stackrel{(1)}{=} xy \cdot x;$$

$$(x \cdot xy) \cdot xy \stackrel{(1)}{=} (xy \cdot (y \cdot yx)) \cdot xy \stackrel{(2)}{=} xy \cdot ((y \cdot yx) \cdot xy) \stackrel{(1)}{=} xy \cdot x;$$

$$(x \cdot xy) \cdot xy \stackrel{(1)}{=} ((y \cdot yx)x)(y \cdot yx) \stackrel{(2)}{=} (y \cdot yx) \cdot x(y \cdot yx) \stackrel{(1)}{=} xy \cdot x;$$

$$(x \cdot xy)(y \cdot yx) \stackrel{(1)}{=} ((y \cdot yx)x)(y \cdot yx) \stackrel{(2)}{=} (y \cdot yx) \cdot x(y \cdot yx) \stackrel{(3)}{=} (y \cdot yx) y \stackrel{(1)}{=} xy \cdot x;$$

$$\begin{aligned} &(x \cdot xy)(xy \cdot x) \stackrel{(6)}{=} x; \\ &(x \cdot xy)(yx \cdot y) \stackrel{(19)}{=} ((yx \cdot y) \cdot yx)(yx \cdot y) \stackrel{(19)}{=} y(y \cdot yx) \stackrel{(4)}{=} xy; \\ &(y \cdot yx)(x \cdot xy) \stackrel{(13)}{=} (y \cdot yx)(yx \cdot (y \cdot yx)) \stackrel{(2)}{=} (y \cdot yx)((yx \cdot y) \cdot yx) \stackrel{(17)}{=} yx \cdot y; \\ &(yx \cdot y)(x \cdot xy) \stackrel{(10)}{=} ((x \cdot xy)x)(x \cdot xy) \stackrel{(19)}{=} xy \cdot (xy \cdot x) \stackrel{(15)}{=} y; \\ &(xy \cdot x)(yx \cdot y) \stackrel{(8)}{=} (xy \cdot x)(x(xy \cdot x)) \stackrel{(2)}{=} (xy \cdot x)((x \cdot xy)x) \stackrel{(17)}{=} x \cdot xy. \end{aligned}$$

In each groupoid in V_8 , the equations ax = b and ya = b have solutions x = bba and $y = ab \cdot a$. Moreover, the cancellation laws hold:

$$ac = ad \implies c = (ac \cdot a)a = (ad \cdot a)a = d,$$

 $ca = da \implies c = a(c \cdot ca) = a(ca \cdot a) = a(da \cdot a) = a(d \cdot da) = d.$

Hence, V_8 is a variety of quasigroups.

The multiplication table of the subquasigroup of a quasigroup in \mathcal{V}_8 , generated by the set $\{x,y\}$, is given as follows:

	x	y	xy	yx	$x \cdot xy$	$y \cdot yx$	$xy \cdot x$	$yx \cdot y$
\boldsymbol{x}	x	xy	$x \cdot xy$	$xy \cdot x$	yx	y	$yx \cdot y$	$y \cdot yx$
y	yx	y	$yx \cdot y$	$y \cdot yx$	\boldsymbol{x}	xy	$x \cdot xy$	$xy \cdot x$
xy	$xy \cdot x$	$x \cdot xy$	xy	\boldsymbol{x}	$y \cdot yx$	$yx \cdot y$	y	yx
yx	$y \cdot yx$	$yx \cdot y$	y	yx	$xy \cdot x$	$x \cdot xy$	xy	\boldsymbol{x}
$x \cdot xy$	$yx \cdot y$	$y \cdot yx$	yx	y	$x \cdot xy$	$xy \cdot x$	\boldsymbol{x}	xy
$y \cdot yx$	$x \cdot xy$	$xy \cdot x$	\boldsymbol{x}	xy	$yx \cdot y$	$y \cdot yx$	yx	y
$xy \cdot x$	y	yx	$y \cdot yx$	$yx \cdot y$	xy	\boldsymbol{x}	$xy \cdot x$	$x \cdot xy$
$yx \cdot y$	xy	\boldsymbol{x}	$xy \cdot x$	$x \cdot xy$	y	yx	$y \cdot yx$	$yx \cdot y$

All of the elements in the multiplication table are distinct:

$$x = xy \implies xx = xy \implies x = y;$$

$$x = x \cdot xy \implies xx = x \cdot xy \implies x = xy;$$

$$x = y \cdot yx \implies xx = x(y \cdot yx) \implies x = y;$$

$$x = xy \cdot x \implies xx = xy \cdot x \implies x = xy;$$

$$x = yx \cdot y \implies xy = (yx \cdot y)y \implies xy = x;$$

$$xy = yx \implies xy \cdot yx = yx \cdot yx \implies x = yx;$$

$$xy = x \cdot xy \implies y = xy;$$

$$xy = x \cdot xy \implies y = xy;$$

$$xy = xy \cdot x \implies x \cdot xy = x(y \cdot yx) \implies x \cdot xy = y;$$

$$xy = xy \cdot x \implies xy \cdot xy = xy \cdot x \implies xy = x;$$

$$xy = xy \cdot x \implies xy \cdot xy = xy \cdot x \implies xy = x;$$

$$xy = yx \cdot y \implies xy \cdot y = (yx \cdot y)y \implies x \cdot xy = x;$$

$$x \cdot xy = y \cdot yx \implies x(x \cdot xy) = x(y \cdot yx) \implies yx = y;$$

$$x \cdot xy = xy \cdot x \implies x \cdot xy = x \cdot yx \implies xy = yx;$$

$$x \cdot xy = xy \cdot y \implies x \cdot xy = x \cdot yx \implies xy = xy.$$

$$x \cdot xy = xy \cdot y \implies x \cdot xy = x \cdot xy \implies xy = xy.$$

$$x \cdot xy = xy \cdot y \implies x \cdot xy = x \cdot xy \implies xy = xy.$$

4. A construction of (2,9)-variety of groupoids

THEOREM 4.1. Let V9 be the variety of groupoids defined by the identities

(1)
$$x \cdot xy = yx$$
, (2) $xy \cdot (y \cdot xy) = x$.

Then V_9 is a (2,9)-variety of quasigroups.

PROOF. One can check that the identities (3)–(30), given below, are satisfied by any groupoid in \mathcal{V}_9 . We emphasis the identities that can be applied to the left-hand side of each equality in order to obtain its right-hand side.

Identity	Left-hand side =	Right-hand side	Applyed identities
(3)	$xy \cdot x =$		(1),(1)
(4)	xx =	x	(1),(1),(3),(2)
(5)	$(x \cdot yx) \cdot xy =$	$xy \cdot yx$	(3),(3),(1)
(6)	$xy \cdot (x \cdot yx) =$	yx	(3),(1),(1)
(7)	$(xy \cdot y) \cdot xy = 1$	x	(3),(2)
(8)	$(x \cdot yx) \cdot yx =$	$y \cdot xy$	(1),(2),(3)
(9)	$(x \cdot yx)y =$	\boldsymbol{x}	(2), (3), (7)
(10)	$yx \cdot x =$	$xy \cdot y$	(1), (2), (3), (2)
(11)	$(x \cdot yx)x =$	$yx \cdot xy$	(3),(10),(1)
(12)	$x(xy \cdot y) =$	$yx \cdot xy$	(10), (3), (11)
(13)	$xy \cdot (yx \cdot xy) =$		(1),(1),(2)
(14)	$(xy \cdot yx) \cdot yx =$	$xy \cdot y$	(1), (13), (10)
(15)	$(xy \cdot y)x =$		(10), (10), (8)
(16)	$(xy \cdot y)(x \cdot yx) =$	$xy \cdot yx$	(15), (10), (1), (12)
(17)	$x(yx \cdot xy) =$	$y \cdot xy$	(12), (1), (15)
(18)	$x(y \cdot xy) =$	$xy \cdot yx$	(2), (10), (8), (5)
(19)	$x(xy \cdot yx) =$		(18), (1), (9)
(20)	$(xy \cdot yx)x =$	xy	(1), (19)
(21)	$(x \cdot yx)(xy \cdot yx) =$	yx	(5), (1), (6)
(22)	$(xy \cdot yx)(x \cdot yx) =$	$y \cdot xy$	(1), (21), (8)
(23)	$(xy \cdot yx)y =$		(1), (17), (18)
(24)	$(xy \cdot yx)(yx \cdot xy) =$	$x \cdot yx$	(23), (1), (17)
(25)	$(x \cdot yx)(xy \cdot y) =$	xy	(10), (1), (3), (2)
(26)	$(xy \cdot yx)(y \cdot xy) =$	yx	(11), (3), (2)
(27)	$(x \cdot yx)(yx \cdot xy) =$		(1), (26), (14), (10)
(28)	$(xy \cdot y)(xy \cdot yx) =$		(16), (1), (25)
(29)	$(xy \cdot yx)(xy \cdot y) =$		(1), (28), (7)
(30)	$(x \cdot yx)(y \cdot xy) =$		(8), (1), (3), (7)

Next, we show that every groupoid in V_9 is a quasigroup.

The equations ax = b and ya = b have solutions $x = ab \cdot ba$ and $y = b \cdot ab$ respectively, and they are unique. Namely, if ac = b and da = b, we have that $c = ca \cdot (a \cdot ca) = (a \cdot ac)(ac \cdot a) = ab \cdot ba$ and $d = da \cdot (a \cdot da) = b \cdot ab$.

By the above identities, we have that a subquasigroup generated by two distinct elements x and y is represented by the following table, and one can check that all of the elements are distinct.

	x	y	xy	yx	$x \cdot yx$	$y \cdot xy$	$xy \cdot yx$	$yx \cdot xy$	$xy \cdot y$
\boldsymbol{x}	x	xy	yx	$x \cdot yx$	$xy \cdot y$	$xy \cdot yx$	y	$y \cdot xy$	$yx \cdot xy$
y	yx	y	$y \cdot xy$	xy	$yx \cdot xy$	$xy \cdot y$	$x \cdot yx$	\boldsymbol{x}	$xy \cdot yx$
xy	$x \cdot yx$	$xy \cdot y$	xy	$xy \cdot yx$	yx	\boldsymbol{x}	$yx \cdot xy$	y	$y \cdot xy$
yx	$xy \cdot y$	$y \cdot xy$	$yx \cdot xy$	yx	y	xy	\boldsymbol{x}	$xy \cdot yx$	$x \cdot yx$
$x \cdot yx$	$yx \cdot xy$	\boldsymbol{x}	$xy \cdot yx$	$y \cdot xy$	$x \cdot yx$	y	yx	$xy \cdot y$	xy
$y \cdot xy$	y	$xy \cdot yx$	$x \cdot yx$	$yx \cdot xy$	\boldsymbol{x}	$y \cdot xy$	$xy \cdot y$	xy	yx
$xy \cdot yx$	xy	$yx \cdot xy$	y	$xy \cdot y$	$y \cdot xy$	yx	$xy \cdot yx$	$x \cdot yx$	\boldsymbol{x}
$yx \cdot xy$	$xy \cdot yx$	yx	$xy \cdot y$	\boldsymbol{x}	xy	$x \cdot yx$	$y \cdot xy$	$yx \cdot xy$	- y
$xy \cdot y$	$y \cdot xy$	$x \cdot yx$	\boldsymbol{x}	y	$xy \cdot yx$	$yx \cdot xy$	xy	yx	$xy \cdot y$

References

- [1] L. Goračinova, S. Markovski, (2, n)-Quasigroups (preprint)
- [2] J. Denes, A. D. Keedwell, Latin Squares and Their Applications, English Universities Press, London, 1974
- [3] R. N. McKenzie, W. F. Taylor, G. F. McNulty, Algebras, Lattices, Varieties, Wadsworth and Brooks, Monterey, California, 1987
- [4] R. Padmanabhan, Characterization of a class of groupoids, Algebra Universalis 1 (1972), 374-382.

Pedagogical faculty University "Goce Delčev" Štip Republic of Macedonia lidija.goracinova@ugd.edu.mk

Institute of Informatics
"Ss Cyril and Methodius" University, Faculty of Sciences
Skopje
Republic of Macedonia
smile@ii.edu.mk