Математички Билтен

30 (LVI)

2006 (5-8)

Скопје, Македонија

A NOTE ON ORTHOGONALITY OF THE QUASIGROUPS ARISING FROM SOME PERFECT m-CYCLE SYSTEMS

Lidija Goračinova-Ilieva

Abstract

In this paper we show that the quasigroups obtained from $\{k,k+1,k+2\}$ -perfect m-cycle system by using the k-construction and the (k+1)-construction are mutually orthogonal.

An m-cycle system of order n is a pair (S,C), where C is a collection of edge disjoint m-cycles which partitions the edge set of the complete undirected graph K_n with vertex set S, |S| = n. Let (S,C) be an m-cycle system and for each m-cycle $c \in C$ denote by c(k) the distance k graph of c (that is, the graph formed on the same set of vertices as c by joining two vertices if and only if they are connected by a path of length k in c). If the edges belonging to c(k), all $c \in C$, partition the edge set of K_n , the m-cycle system (S,C) is said to be k-perfect. If K is a finite set of positive integers, the m-cycle system is said to be K-perfect provided it is k-perfect for each $k \in K$.

Let (S,C) be an m-cycle system of order n and $1 \le h < m/2$. The h-construction is a binary operation \circ on S, defined by $a \circ a = a$ for all $a \in S$ and $a \circ b = u$ and $b \circ a = v$ if and only if $(a,b,\ldots,u,\ldots,v,\ldots) \in C$, the distance from b to u is h and the distance from a to v is h. It is easy to see that (S,\circ) is a quasigroup precisely when (S,C) is both h and h+1 perfect.

The aim of this paper is to show that the quasigroups obtained in this

way are orthogonal, in some cases.

Two finite groupoids (G, \cdot) and (G, *) defined on the same set G is said to be orthogonal if the pair of equations $x \cdot y = a$ and x * y = b (where a and b are any two given elements of G) are satisfied simultaneously by an unique pair of elements x and y from G.

Theorem 1. Let (S, C) be an m-cycle system which is $\{k, k+1, k+2\}$ perfect for some integer $k \geq 1$. Then the quasigroups arising from (S, C)by using the k-construction and the (k+1)-construction are orthogonal.

Proof. Proof Denote by (S, \circ) and (S, *) the quasigroups obtained by using the k-construction and the (k + 1)-construction respectively.

Let a and b be arbitrary elements of S. Note that $x \circ y = a$ and x * y = a if and only if x = y = a. So, let $a \neq b$ and $c \in C$ be the cycle which contains the edge $\{a,b\}$. Denote c by $(x_1,x_2,\ldots,x_{k+1},a,b,x_{k+2},\ldots,x_{m-2})$. Then $x_1 \circ x_2 = a$ and $x_1 * x_2 = b$. The assumption of the existence of elements $x'_1, x'_2 \in S$, such that $(x_1, x_2) \neq (x'_1, x'_2)$ and $x'_1 \circ x'_2 = a$, $x'_1 * x'_2 = b$, implies that there is a cycle $c' \neq c$ which can be denoted by $(x'_1, x'_2, \ldots, x'_{k+1}, a, b, x'_{k+2}, \ldots, x'_{m-2})$, contradicting the uniqueness of the cycle containing the edge $\{a, b\}$.

Hence, $(\forall a, b \in S)(\exists !(x, y) \in S \times S) \ x \circ y = a, \ x * y = b$, i.e. (S, \circ) and (S, *) are orthogonal quasigroups.

It is clear that every m-cycle system (S, C) is 1-perfect, since c(1) = c for all $c \in C$. It is also known that $\{2,3\}$ -perfect m-cycle systems can be equationally defined for m = 5, 7, 8, 9 and 11 only ([2],[3],[4],[5]). Therefore, every finite quasigroup belonging to the corresponding varieties has an orthogonal mate.

Note that the condition of being a quasigroup, required for the groupoids arising from m-cycle systems, plays no role in the proof of the theorem. So, we can generalize the statement in the following way.

Theorem 2. Let (S, C) be an m-cycle system. Then the groupoids arising from (S, C) by using the k-construction and the (k+1)-construction are orthogonal.

References

- [1] J. Denes, A. D. Keedwell: Latin squares and their applications, Engl Univ Press, London (1974)
- [2] E. M. Li Marzi: Perfect 7-cycle systems, Discrete Appl Math 130/3 (2003), 535-538
- [3] E. M. Li Marzi, C. C. Lindner, F. Rania, R. M. Wilson: $\{2,3\}$ -Perfect m-cycle systems are equationally defined for m=5,7,8,9 and 11 only, J. Combin Designs 12 (2004), 449-458
- [4] E. M. Li Marzi, F. Rania: On equationally definable m-cycle systems, Rendiconti del Seminario Mathematico di Messina – Serie II Tomo XXIV Supplemento al N⁰8 (2002), 87-93
- [5] C. C. Lindner: Graph theory and universal algebra go hand in hand, Austra Math Soc Gazette 24 (1997), 191-215

ОРТОГОНАЛНОСТ НА КВАЗИГРУПИТЕ КОИ ПРОИЗЛЕГУВААТ ОД ОДРЕДЕНИ ПЕРФЕКТНИ m-ЦИКЛИЧНИ СИСТЕМИ

Лидија Горачинова-Илиева

Резиме

Во овој труд е покажано дека квазигрупите добиени од $\{k,k+1,k+2\}$ -перфектни m-циклични системи со користење на k-конструкцијата и (k+1)-конструкцијата се заемно ортогонални.

University "Ss Cyril and Methodius" - Skopje Macedonia

Pedagogical Faculty "Gotse Delčev" - Štip Macedonia

e-mail: lidija@pfst.ukim.edu.mk