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Injective Groupoids in some Varieties of Groupoids
G. Cupona, N. Celakoski, B. Janeva

Abstract

Some varietics of groupoids are consideved in this paper. In each vari-
ety V a class V-inj is defined, such that the class of V-free groupoids’ is its
proper subelass. For a groupoid H € V a set of V-prime elements is also
defined. Then, for each considered varicty V' a proposition, called Bruck
Theorvem for the varicty V, namely the following statement: 7A groupoid
H ¢V is V-free iff it satisfies the following two conditions: (1) H € V-inj,
(éi) The set of V-prime elements in H genevates H." is proved.

0 Introduction

Throughout this paper we assume that F is a given absolutely free groupoid
willi a basis I, i.e. gronpoid free in the variety of all groupoids.

We are interested in a special case of Lemma 1.5 in [1], namely the following
proposition.

Proposition 0.1 A groupoid ¥= (F|.) 13 absoluicly free iff it satisfies the fol-
lowing conditions:

(i) F is injec!iwz
(i) The zet B of prime elements® in Fgencrates F.

Then B is the umique (frec) basis of F. [J

(We reffer to this proposition as Bruck’s Theorem.)
A groupoid G= (G, #) is associated to F if it satisfies the following conditions:

(a) BCGCF,
(0) (Vi,u, e F) (lu € G = LLu € G & t*u = tu).

Let G be a groupoid associated to F. If G is V-free with a basis I, then we
say that G is a V-canonical groupoid. (We note that there might exist more then
one V-canonical groupoids. However, as they are V-free, they are isomorphic.)
For a V-canonical groupoid with a basis I3 we will nse the notation R=(R, *),
as R is obtained by a corresponding reduction on F', which depends, of course,
on the variety V.

Ti.e. the class of groupeids free in the variety V.
2 A groupoid G=(G,) is injective iff the mapping - : (z,¥) = = -y is an injection.
Y2 € G is prime in G ifl (Vz,y € G)a # zy. '



For defining the class V-inj of gronpoids we essentially use properties of the
corresponding V-canonical groupoid R, formerly constructed. We will look for
an axiom system of the class V-inj among the properties of the V-canonical
groupoid R which are not related to the properties of V-prime elements. If the
identities that are the axioms of the variety V are normal?, then V-prime means
the same as prime element according to Proposition 0.1,

Among the varieties considered in this paper, only the varicty U, n > 2
defined with the axiom® = = z does not satisfy the above property, ie. is
not defined by a normal identity. If G € U,,, we say that an clement o € G is
Up-prime il

(Vz,y€G) (a=zy=>z=y""").

This papesr cousists of 3 sections.

In the first section we prove Bruck Theorem for the variety U,. At the same
time we give a correction of the definition of the class U,-inj (n > 3) stated
in [3], which does not provide validness of Bruck Theorem (see Example 1.1
below).

In the second section we define the class Va-inj for the variety Vz of groupoids
defined by the axiom (zy)? = z%y* and we prove the corresponding Bruck
Theoremn.

In scction 3 we give a short overview of the results on injectivity in the
varicties U, U, in [5] and [6]. This way we have in this paper all the results on
injectivity of groupoids obtained up o now by the authors,

1 Injective Groupoids in U,
It is shown in [3] that the U, -canonical groupoid R= (R, #) is dcfined as follows:
R={te F|(Vze F)z" ¢ P(t)}.°
If t,u € I, then
R A

determines an operation on I,
Note that for £ € R, t* is the k-th power of £ in F. In the same way t* is the
k-th power of ¢ in R. Therefore: £} = ¢; P (18)  t, and Lhus

(Vi€ R, 1 <k<n)ts =1tk (1)

which implies that for cach t € R,

4 An identity is said to be normal if neither of its sides is a variable.
*Throughout the paper z* is defined by: =' = =, P L
SRor cach v € F, P(v) and |u] are defined as follows: P(b) = {b}, P(tn) = {tujuP()UP (),

and |b] = 1, |tu] = |¢] + |u|, for each be B and t,n € F.
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RO NS R = 1 (2)
Also,

(Vo € R\ B)(A(t,u) € R*) v =twu(=tu) &t #u""". (3)

The properties (1.1), (1.2) and (1.3) suggest the following definition of the
class Uyp-inj.
A gronpoid H= (H,-) is injective in U, if it satisfies the following conditions:

1} llC u»;
ii) for each a € H. the set {a,a®,...,a" '} has exactly n — 1 clements;

itr) If @ € H is not an U,-prime, then there is a uniquely determined pair

(b,e) € H?, such that a = be & b # e

(In this case we say thal (b, ¢) is the pair of divisors of a, and write (b, ¢)|a.)

If an Uy, -injective gronpoid is defined only by ¥) and i), as in [3], then the
following example shows that Bruck Theorem can not, he obtained.

Example 1.1 Let n > 2, B=AUC, A# 0,
H:= (i€ F|(Va€ A,y € F)a® ¢ P(t) & y" ¢ D(t)}.
Define an operalion # in H by:

tu, iftnwe H
txu:=¢ t, ft=uecAd

u, ift=u""?

Then H=(I1,*) satisfies 1) and i11), B # @ is Lthe sel of primes and generates H,
but H is not I, free.

Using (1.1), (1.2), (1.3) and the definition of the class Uy,-inj we obtain the
following:

Proposition 1.2 If H s U,,-free, then HE U, ~my. []
Bellow we assume that HE U, -inj.

Proposition 1.3 If (b,¢) is the pair of divisors of a € H, a = 'd" & (', d') #
(¢,d), then &' =d™ 1. 0O

Proposition 1.4 For cachaec H, 2 < k<n-—1. a¥ is not an U,-prime in H,
and (a*~ ', a) is the pair of divisors of a* in H.



k-1 n—1

k=1. a, we have @b~ = a7,

Proof. Let af be U,-prime. Then, as at =a
which contradicts 1) of the definition of the class Up-inj. O

Now we assume that H € U,-inj is such that the set B of Uy,-primes in H is
nonemply and generates H. If we put
Co = B, C, = CyCy = BB, and define Cry1 by

Cis1 = {a € H\B: (e,d)la= {e,d} S CoUCLU---UCs & {c,d} N Ci # B),

then
H=|J{Cp|p>0), (4)

and p#q=C,0C, =0
Also, by induction on 1, it follows that

a€Cr= (Vi<n-1) a' € Cryi-1s (5)
which implies that Cy # @, for cach k > 0.

Theorem 1 (Bruck Theorem for U,,) Let HE U, Then H is Uy -free iff H

satisfics the following conditions
(1) H € U,,-1ny,
(#1) The set B of Uy -primes in H is noncmply and generates .

Proof. If H is U,.-free, then by Proposition 1.1 we have that H € Uy,-inj,
and the basis B of H is the set of Uy,-primes in H and generates H.

Conversly, let H € Uy,-inj, and B # @ be the set of U,-primes in H and
generates H. Then, by (1.4), H = J{C, | p > 0}.

Let G € Uy, and A : B 3 G be a mapping. For cach & € N we define a
sequence of mappings @ : Cx =+ G inductively as follows:

o = A, and let @; be defined for each 1 < &,

If @ € Cryy and (b,¢)|a are such that b € C; and ¢ € C,, then 7,5 < k and
if we pnt @ry1(a) = @n(b) - @alc), then @ := J{w: | i > 0} is a mapping from
H into G. If a € I is not a Uy,-prime aud (e, d)|a, then p(a) = @(c)p(d).

Also, by induction on k, we have

pla*) = (p(a))*, (6)

forecacha€ Huand 1 <k <n—1.

It reruains to prove that ¢ is a homomorphism. If b,c € H, then cither (b,¢c)
is the pair of divisors of be or b= ¢},

If (b, ¢) is the pair of divisors of be, then ¢(be) = @(b)@(c). On the other
hand, if b = ¢"~!, then

(e )ple) = p(e)™ 1 p(e) = p(e)" = ple) = ple™).

Thus in both cases possible we have

w(be) = p(b)p(c),
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i.e. @ is a homomorphism from H into G, and thus, H is 2,-free with the basis
5.0
We will give an example of an injective groupoid in 24, that is not U,-free.

Example 1.5 Let B be aninfinite set and R= (I, *) the 2, -canonical groupoid
with the basis B. Defline subsets H C R and D C H x H as follows:

H := {w € R| |set(w)| = 1}7,

D := {(x,y) € H x IT' | set(z) # set(y)},

As D ~ I, there is an injection ¢ : D =+ B, Using the operation # in R and
@, we define an operation o on H by:

o { x Y, if set(z) = set(y)
UL el i set(z) # sel(y),

and obtain that (H,0) € Uu-inj. If @ is a bijection, then the set of U,-primes is
cinply. Thus, by Theorem 1, H is not U,,-free.

We note that if B is any set and ¢ : D — B a mapping, then: a) the
groupoid (H, o) constructed above belongs to L,; b) the set of U,,-primes in H
coincides with B\ tmnep; ¢) (H,0) € U-inj ifl  is an injection. (In thal case,
since 1) is infinike, the set B must be infinite.)

Thus we have proved the following statement.

Corollary 1.6 The class of U, -free groupoids is a proper subclass of the class
U, -y, L]

2 Injective Groupoids in V,

We will give an axiom system for Va-inj, after introducing several notions.
If G= (G,-) is a groupoid and k > 0, then z > z'*) is a transformation on
G defined by:

2:"” =, z(k-l-l) e g;“':}x(k) =L (x{k) )2. (7}
An clement b ¢ G is a base in Gafl
(Vee G) (b= ) = p=10). (8)

Ifa € G and a = b'™ | where b is a base, then we say that k& = [a] is an
ceponent of a, and b = a' %) 4 base of a. (If G=F, tlien each clement ¢ has a
unique base and & unigue exponent.)

"For each w € F we define set(w) inductively as follows: set(b) = {b}, sel{uv) = aet(u)U
set(v), foreach b€ B, u,ve F



In [4] & construction of Va-canonical groupoid R with a basis B is given.
Namely, we define B as the least subset of R, such that B C R, and if
w = vw & F\ B, theu:

u € R+ [v,we R & (v=muwor min{[v],[w]} =0)]. (9)

We define an operalion * in R as follows:
Ifu,v € B, m = man{[u],[v]} then

nwEY = (ut _m)v(_'“))('"‘. (10)

As a cousequence of the properties of R and Theorem 2 in [4], an axiom
system for the class Va-inj is oblained. Namely, we say that a groupoid H is
injective in Vy iff it satisfies the following three conditions:

(0) H e V,,

(1) (Va € H)(3Yb,k) € H x N)® a = b'® where b is a base in H.
(In this case we say that k = [a] is the ezponent of a, and b = a'=% the
base of a.)

(2) If bis a base and b is not prime in H, then there is a unique pair (¢, d) € H?,
such that b = ed and at least one among ¢ and d is a hase.
(Tn this case we say that (e,d) is the pair of divisors of the base b.)

We note that here, if z is a base, then (2™, z(P)) is the pair of divisors of z(P+1),

Considering the resnlts in [4] and the definition of the class Va-inj, we have
the following:

Proposition 2.1 [f H ts Va-free with a basis B, then HE Va-inj, B 14 the sei

of primes and generates H. [

Theorem 2 (Bruck Theorem for Vi) Let H € Vo. H 13 Vo-free iff it satis-
fies the following two conditions:

(1) H € Va-1iny,
(1z) The set B of Va-primes in H 1s nonemply and generates H.

Proof. By Proposition 2.1 we have that each Va-free groupoid satisfies the
two conditions.

To prove the converse, we construct a sequence of disjoint sets (Cili > 0) as
in the proof of Theorem 1. Then H = |J;-, Ci, and

a € Cr = (Vp € N) 6 € Ciy,p.

Now, if G € V3, we construct a sequence of mappings ¢ : Cp — G. Then,
as in Theorem 1., ¢ = [J{w. | 1 > 0} is the homomorphic cxtension of A from
H into G, and thus, H is Vs-free with the basis B. [J

We give below an example of a Va-injective groupoid that is not Va-free.

SN is the sct of nonnegative integers,
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Example 2.2 Recall ([4]) that each clement w in R (the canonical Vp-free
groupoid with a basis B) has a unique base and a uniquely determined expo-
nent, denoted by [u]. Let R be the canonical Vo-free groupoid with an infinite
basis B. Define subsets H C R, and D C H x H as follows:

H := {lﬂ {3 f?l |3(?ﬂ(2:)1 — 1};
D := {(u,v) € H x H | set(u) # sct(v),min{[u],[v]} = 0}.

Then D ~ B and there is an injection ¢ : D — B. Define an operation o as
follows:

Ar I IR if set(un) = sei(v)
o= (lp[n(—m}‘.”'[--m}J)(m)‘ if set(u) £ set(v),m = Tllf?!”u],{‘ll”

Then (H,o) is Va-injective. If ¢ is a bijection, the set of primes is empty,
and thus, by Bruck Theorem, (H, o) is not Va-free.

Thus we have proved the following stalement.

Corollary 2.3 The class of Va-free groupoids is a proper subclass of the class
Vo-ing. [

3 Injective Groupoids in U and U,

The varictics Uy, Uy defined by zy? = zy, 5%y = 2y respectively are considered
in [5] and U defined by z%y? = zy in [6]°

Let R={tc F| (Vo,f € F)ap?,a’f ¢ P(t)}, and let an operation * be
defined in R by:

tu, ifitvéER

ou, ft=a?& anve Rl

tp, fu=p2*&IPeER

aff, lt=a®Luw=p&apfen.

t*+u=

Then R = (17, %) is the U-canonical groupoid with the basis B (see 1.3, 1.4 in
[6])-

This suggests the following definition of U-injective groupoids,

A groupoid H € U is U-ingective iff for each element @ € H which is nol
prite, there is a unique pair (b, ¢) of nonidempotent elements such that a = be.
In that case, b = ¢ il @ is an idempolent clement.

(Then we say that (b, ¢) is the pair of divisors of a in H and we write (b, ¢)|a.)

The definition of U-injeetive groupoids points out the following structural
deseription of the U-injective groupoids (Proposition 2.2 in [6]).

2 We note that I = Uy N U,



Proposition 3.1 Let A and A’ be two nonemply disjoint scts of the same car-
dinality, p : A = A’ a bijection, and ¥ : D — A an igection, where

b= {(a,fn) | a,be A, a 9& b}.

If we define an operation ® on the set H = AU A" by:

(Va,be A,a £ V) aeb=pa)eb=aseph) =pla)p(b) = (a,b),

aea=p(a),
then we oblain a U-injective groupotd L = (I, o) tn which A\ ima) is the set of
primes. (In this case we denote H by (A, A'50,9).)

Conversly, if H ts a U-ingective groupoid with at least two elements, then it
is isomorphic with a groupoid (A, A';,) defined as above. If o in (A, A'590,9)
iy« bijection, then we obtain thet (A, A';p ) 15 a U-tygective groupord which
18 nol U-free. O

We note that a U-injeclive gronpoid is finibe with 7 elements il n = 1,2,4
(see 2.3 in [6]).

In [5] a U,-canonical groupoid with a basis 7 is constructed and the identity
zy* = =zy, for every k > 1 is proved. This enables us to state the following
system of axioms for the class Urp-inj.

A groupoid H belongs to U,-inj iff
(0) H € U,.
(1) Ifac H, myn > 1 are such that a™ = a", Lhen m = n.

(2) For cach a € H which is not prime in H, there is a unique pair (¢, d) € H?
such that @ = be and ¢ is a base in H and
[(V(¥,¢') € H*) a=¥c" = b=V & cis the base of ¢'.]

Here, an element ¢ of a groupoid H € U, ix a base in H iff
(Vde H)e =d* = k = 1.

‘(We note that the axiom system for U, -inj in [5] is more "cconomical” one,
but the later is more "convinient for applications™; auyway, they are equivalent. )

Bruck Theorem (for & and #,.) (proved in [5] and [6]) can be shown here in
the same way as for i, in section 1.

At the end, we will state some remarks.

(v, )

Remark 1. The varicties &, U and U, are special cases of the varicty V
defined by =z™y™ = zy, where m,n > 1 [9].

Remark 2. The groupoids constructed in Example 1.5 and Example 2.2
depend essentially on the corresponding canonical groupoid. If we have con-
structed an example of V-injeclive groupoid that is not V-free not depending
on the V-canonical groupoid, we might be able to give a description of the class
V-inj (as for the class U-inj in Proposition 3.1)..

Remark 3 The authors have investigated other varieties, as well (e.x. (7],
[8] and [9]) and have given a description of V-canonical groupoids.
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Remark 4. In the variclies of left-zero groupoids (defined by zy = z) and
constant groupoids (defined by 2y = uv) each groupoid is free, and thus the
class of V-free groupoids coincides with the class of V-inj. Bruck Theorem is
obviously valid in these two cascs, but no subelass different from the variety V
conld be obtained.
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