Injective Groupoids in some Varieties of Groupoids G. Čupona, N. Celakoski, B. Janeva

Abstract

Some varieties of groupoids are considered in this paper. In each variety V a class V-inj is defined, such that the class of V-free groupoids is its proper subclass. For a groupoid $\mathbf{H} \in \mathcal{V}$ a set of \mathcal{V} -prime elements is also defined. Then, for each considered variety V a proposition, called Bruck Theorem for the variety V, namely the following statement: "A groupoid $\mathbf{H} \in \mathcal{V}$ is \mathcal{V} -free iff it satisfies the following two conditions: (i) $\mathbf{H} \in \mathcal{V}$ -inj, (ii) The set of V-prime elements in H generates H." is proved.

Introduction

Throughout this paper we assume that F is a given absolutely free groupoid with a basis B, i.e. groupoid free in the variety of all groupoids.

We are interested in a special case of Lemma 1.5 in [1], namely the following proposition.

Proposition 0.1 A groupoid $F = (F, \cdot)$ is absolutely free iff it satisfies the following conditions:

- (i) F is injective2
- (ii) The set B of prime elements in Fgenerates F

Then B is the unique (free) basis of F. .

(We reffer to this proposition as Bruck's Theorem.) A groupoid G = (G, *) is associated to F if it satisfies the following conditions:

- (a) $B \subseteq G \subseteq F$,
- (b) $(\forall t, u, \in F)$ $(tu \in G \Rightarrow t, u \in G \& t * u = tu).$

Let G be a groupoid associated to F. If G is V-free with a basis B, then we say that G is a V-canonical groupoid. (We note that there might exist more then one V-canonical groupoids. However, as they are V-free, they are isomorphic.) For a V-canonical groupoid with a basis B we will use the notation $\mathbf{R}=(R,*)$, as R is obtained by a corresponding reduction on F, which depends, of course, on the variety V.

¹ i.e. the class of groupeids free in the variety V.

² A groupoid $G = (G, \cdot)$ is injective iff the mapping $\cdot : (x, y) \mapsto x \cdot y$ is an injection. ³ $a \in G$ is prime in G iff $(\forall x, y \in G)a \neq xy$.

For defining the class V-inj of groupoids we essentially use properties of the corresponding V-canonical groupoid R, formerly constructed. We will look for an axiom system of the class V-inj among the properties of the V-canonical groupoid R which are not related to the properties of V-prime elements. If the identities that are the axioms of the variety V are normal⁴, then V-prime means the same as prime element according to Proposition 0.1.

Among the varieties considered in this paper, only the variety \mathcal{U}_n , $n \geq 2$ defined with the axiom⁵ $x^n = x$ does not satisfy the above property, i.e. is not defined by a normal identity. If $\mathbf{G} \in \mathcal{U}_n$, we say that an element $a \in G$ is \mathcal{U}_n -prime iff

 $(\forall x, y \in G) \ (a = xy \Rightarrow x = y^{n-1}).$

This paper consists of 3 sections.

In the first section we prove Bruck Theorem for the variety U_n . At the same time we give a correction of the definition of the class U_n -inj $(n \geq 3)$ stated in [3], which does not provide validness of Bruck Theorem (see Example 1.1 below).

In the second section we define the class V_2 -inj for the variety V_2 of groupoids defined by the axiom $(xy)^2 = x^2y^2$ and we prove the corresponding Bruck Theorem.

In section 3 we give a short overview of the results on injectivity in the varieties \mathcal{U} , \mathcal{U}_r in [5] and [6]. This way we have in this paper all the results on injectivity of groupoids obtained up to now by the authors.

1 Injective Groupoids in U_n

It is shown in [3] that the U_n -canonical groupoid $\mathbf{R} = (R, *)$ is defined as follows:

$$R = \{t \in F \mid (\forall x \in F) \ x^n \notin P(t)\}.^6$$

If $t, u \in R$, then

$$t*u := \left\{ \begin{array}{ll} tu, & \text{if } t \neq u^{n-1} \\ u, & \text{if } t = u^{n-1} \end{array} \right.$$

determines an operation on R.

Note that for $t \in R$, t^k is the k-th power of t in F. In the same way t^k_* is the k-th power of t in R. Therefore: $t^1_* = t$; $t^{k+1}_* = (t^k_*) * t$, and thus

$$(\forall t \in R, \ 1 \le k < n) \ t_*^k = t^k, \tag{1}$$

which implies that for each $t \in R$,

⁴An identity is said to be normal if neither of its sides is a variable.

⁵Throughout the paper x^n is defined by: $x^1 = x$, $x^{k+1} = x^k \cdot x$.

⁶ For each $v \in F$, P(v) and |v| are defined as follows: $P(b) = \{b\}$, $P(tu) = \{tu\} \cup P(t) \cup P(u)$, and |b| = 1, |tu| = |t| + |u|, for each $b \in B$ and $t, u \in F$.

$$|\{t, t_{\star}^{2}, \dots, t_{\star}^{n-1}\}| = |\{t, t^{2}, \dots, t^{n-1}\}| = n - 1.$$
 (2)

Also,

$$(\forall v \in R \setminus B)(\exists!(t, u) \in R^2) \ v = t * u (= tu) \& t \neq u^{n-1}.$$
 (3)

The properties (1.1), (1.2) and (1.3) suggest the following definition of the class U_n -ini.

A groupoid $H = (H, \cdot)$ is injective in U_n if it satisfies the following conditions:

- i) H∈ Un;
- ii) for each $a \in H$, the set $\{a, a^2, \dots, a^{n-1}\}$ has exactly n-1 elements;
- iii) If $a \in H$ is not an \mathcal{U}_n -prime, then there is a uniquely determined pair $(b,c) \in H^2$, such that $a = bc \& b \neq c^{n-1}$.

(In this case we say that (b, c) is the pair of divisors of a, and write (b, c)|a.)

If an U_n -injective groupoid is defined only by i) and iii), as in [3], then the following example shows that Bruck Theorem can not be obtained.

Example 1.1 Let $n \geq 2$, $B = A \cup C$, $A \neq \emptyset$,

$$H := \{t \in F | (\forall a \in A, y \in F)a^2 \notin P(t) \& y^n \notin P(t) \}.$$

Define an operation * in H by:

$$t*u := \left\{ egin{array}{ll} tu, & ext{if } tu \in H \\ t, & ext{if } t=u \in A \\ u, & ext{if } t=u^{n-1} \end{array}
ight.$$

Then $\mathbf{H} = (H, *)$ satisfies i) and iii), $B \neq \emptyset$ is the set of primes and generates \mathbf{H} , but \mathbf{H} is not \mathcal{U}_n —free.

Using (1.1), (1.2), (1.3) and the definition of the class U_n -inj we obtain the following:

Proposition 1.2 If H is U_n -free, then $H \in U_n$ -inj. \square

Bellow we assume that $H \in \mathcal{U}_n$ -inj.

Proposition 1.3 If (b,c) is the pair of divisors of $a \in H$, $a = c'd' & (c',d') \neq (c,d)$, then $c' = d'^{n-1}$. \square

Proposition 1.4 For each $a \in H$, $2 \le k \le n-1$, a^k is not an \mathcal{U}_n -prime in H, and (a^{k-1}, a) is the pair of divisors of a^k in H.

Proof. Let a^k be \mathcal{U}_n -prime. Then, as $a^k = a^{k-1} \cdot a$, we have $a^{k-1} = a^{n-1}$, which contradicts ii) of the definition of the class \mathcal{U}_n -inj. \square

Now we assume that $H \in \mathcal{U}_n$ -inj is such that the set B of \mathcal{U}_n -primes in H is nonempty and generates H. If we put

 $C_0 = B$, $C_1 = C_0C_0 = BB$, and define C_{k+1} by

 $C_{k+1} = \{a \in H \setminus B : (c,d) | a \Rightarrow \{c,d\} \subseteq C_0 \cup C_1 \cup \cdots \cup C_k \& \{c,d\} \cap C_k \neq \emptyset\},\$

then

$$H = \{ \{ C_p \mid p \ge 0 \},$$
 (4)

and $p \neq q \Rightarrow C_p \cap C_q = \emptyset$.

Also, by induction on i, it follows that

$$a \in C_k \Rightarrow (\forall i \le n-1) \ a^i \in C_{k+i-1},$$
 (5)

which implies that $C_k \neq \emptyset$, for each $k \geq 0$.

Theorem 1 (Bruck Theorem for U_n) Let $H \in U_n$. Then H is U_n -free iff H satisfies the following conditions

- (i) H ∈ Un-inj,
- (ii) The set B of Un-primes in H is nonempty and generates H.

Proof. If **H** is \mathcal{U}_n -free, then by Proposition 1.1 we have that $\mathbf{H} \in \mathcal{U}_n$ -inj, and the basis B of **H** is the set of \mathcal{U}_n -primes in **H** and generates **H**.

Conversly, let $\mathbf{H} \in \mathcal{U}_n$ -inj, and $B \neq \emptyset$ be the set of \mathcal{U}_n -primes in \mathbf{H} and generates \mathbf{H} . Then, by (1.4), $H = \bigcup \{C_p \mid p \geq 0\}$.

Let $G \in \mathcal{U}_n$ and $\lambda : B \to G$ be a mapping. For each $k \in N$ we define a sequence of mappings $\varphi_k : C_k \to G$ inductively as follows:

 $\varphi_0 = \lambda$, and let φ_i be defined for each $i \leq k$.

If $a \in C_{k+1}$ and (b,c)|a are such that $b \in C_r$ and $c \in C_s$, then $r,s \leq k$ and if we put $\varphi_{k+1}(a) = \varphi_r(b) \cdot \varphi_s(c)$, then $\varphi := \bigcup \{\varphi_i \mid i \geq 0\}$ is a mapping from H into G. If $a \in H$ is not a \mathcal{U}_n -prime and (c,d)|a, then $\varphi(a) = \varphi(c)\varphi(d)$.

Also, by induction on k, we have

$$\varphi(a^k) = (\varphi(a))^k, \tag{6}$$

for each $a \in H$ and $1 \le k \le n-1$.

It remains to prove that φ is a homomorphism. If $b, c \in H$, then either (b, c) is the pair of divisors of bc or $b = c^{n-1}$.

If (b,c) is the pair of divisors of bc, then $\varphi(bc) = \varphi(b)\varphi(c)$. On the other hand, if $b = c^{n-1}$, then

$$\varphi(c^{n-1})\varphi(c) = \varphi(c)^{n-1}\varphi(c) = \varphi(c)^n = \varphi(c) = \varphi(c^n).$$

Thus in both cases possible we have

$$\varphi(bc) = \varphi(b)\varphi(c),$$

i.e. φ is a homomorphism from H into G, and thus, H is \mathcal{U}_n -free with the basis B. \square

We will give an example of an injective groupoid in U_n that is not U_n -free.

Example 1.5 Let B be an infinite set and $\mathbf{R} = (R, *)$ the \mathcal{U}_n -canonical groupoid with the basis B. Define subsets $H \subseteq R$ and $D \subseteq H \times H$ as follows:

$$H := \{ w \in R | |set(w)| = 1 \}^7,$$

$$D := \{(x, y) \in H \times H \mid set(x) \neq set(y)\},\$$

As $D \sim B$, there is an injection $\varphi : D \to B$. Using the operation * in \mathbb{R} and φ , we define an operation \circ on H by:

$$x \circ y := \left\{ \begin{array}{ll} x * y, & \text{if } set(x) = set(y) \\ \varphi(x,y), & \text{if } set(x) \neq set(y), \end{array} \right.$$

and obtain that $(H, \circ) \in \mathcal{U}_n$ -inj. If φ is a bijection, then the set of \mathcal{U}_n -primes is empty. Thus, by Theorem 1, H is not \mathcal{U}_n -free.

We note that if B is any set and $\varphi: D \to B$ a mapping, then: a) the groupoid (H, \circ) constructed above belongs to \mathcal{U}_n ; b) the set of \mathcal{U}_n -primes in H coincides with $B \setminus in\varphi$; c) $(H, \circ) \in \mathcal{U}_n$ -inj iff φ is an injection. (In that case, since D is infinite, the set B must be infinite.)

Thus we have proved the following statement.

Corollary 1.6 The class of U_n -free groupoids is a proper subclass of the class U_n -inj. \square

2 Injective Groupoids in V_2

We will give an axiom system for V_2 -inj, after introducing several notions.

If $G = (G, \cdot)$ is a groupoid and $k \ge 0$, then $x \mapsto x^{(k)}$ is a transformation on G defined by:

$$x^{(0)} = x, \quad x^{(k+1)} = x^{(k)}x^{(k)} = (x^{(k)})^2.$$
 (7)

An element $b \in G$ is a base in G iff

$$(\forall x \in G) \ (b = x^{(p)} \Rightarrow p = 0). \tag{8}$$

If $a \in G$ and $a = b^{(k)}$, where b is a base, then we say that k = [a] is an exponent of a, and $b = a^{(-k)}$ a base of a. (If G=F, then each element t has a unique base and a unique exponent.)

⁷ For each $w \in F$ we define set(w) inductively as follows: $set(b) = \{b\}$, $set(uv) = set(u) \cup set(v)$, for each $b \in B$, $u, v \in F$

In [4] a construction of V_2 -canonical groupoid R with a basis B is given. Namely, we define R as the least subset of R, such that $B \subseteq R$, and if $u = vw \in F \setminus B$, then:

$$u \in R \iff [v, w \in R \& (v = w \text{ or } min\{[v], [w]\} = 0)].$$
 (9)

We define an operation * in R as follows:

If $u, v \in R$, $m = min\{[u], [v]\}$ then

$$u * v = (u^{(-m)}v^{(-m)})^{(m)}. \tag{10}$$

As a consequence of the properties of R and Theorem 2 in [4], an axiom system for the class V_2 -inj is obtained. Namely, we say that a groupoid H is injective in V_2 iff it satisfies the following three conditions:

- (0) H ∈ V₂,
- (∀a ∈ H)(∃!(b,k) ∈ H × N)⁸ a = b^(k), where b is a base in H.
 (In this case we say that k = [a] is the exponent of a, and b = a^(-k) the base of a.)
- (2) If b is a base and b is not prime in H, then there is a unique pair $(c,d) \in H^2$, such that b = cd and at least one among c and d is a base.

 (In this case we say that (c,d) is the pair of divisors of the base b.)

We note that here, if x is a base, then $(x^{(p)}, x^{(p)})$ is the pair of divisors of $x^{(p+1)}$. Considering the results in [4] and the definition of the class \mathcal{V}_2 -inj, we have the following:

Proposition 2.1 If H is V_2 -free with a basis B, then $H \in V_2$ -inj, B is the set of primes and generates H. \square

Theorem 2 (Bruck Theorem for V_2) Let $H \in V_2$. H is V_2 -free iff it satisfies the following two conditions:

- (i) H ∈ V₂-inj,
- (ii) The set B of V2-primes in H is nonempty and generates H.

Proof. By Proposition 2.1 we have that each V_2 -free groupoid satisfies the two conditions.

To prove the converse, we construct a sequence of disjoint sets $(C_i|i \geq 0)$ as in the proof of Theorem 1. Then $H = \bigcup_{i \geq 0} C_i$, and

$$a \in C_k \Rightarrow (\forall p \in N) \ a^{(p)} \in C_{k+p}$$
.

Now, if $G \in \mathcal{V}_2$, we construct a sequence of mappings $\varphi_k : C_k \to G$. Then, as in Theorem 1., $\varphi = \bigcup \{\varphi_i \mid i \geq 0\}$ is the homomorphic extension of λ from H into G, and thus, H is \mathcal{V}_2 -free with the basis B. \square

We give below an example of a V_2 -injective groupoid that is not V_2 -free.

⁸ N is the set of nonnegative integers.

Example 2.2 Recall ([4]) that each element u in \mathbb{R} (the canonical \mathcal{V}_2 -free groupoid with a basis B) has a unique base and a uniquely determined exponent, denoted by [u]. Let \mathbb{R} be the canonical \mathcal{V}_2 -free groupoid with an infinite basis B. Define subsets $H \subseteq \mathbb{R}$, and $D \subseteq H \times H$ as follows:

$$H := \{x \in R \mid |set(x)| = 1\};$$

$$D := \{(u, v) \in H \times H \mid set(u) \neq set(v), min\{[u], [v]\} = 0\}.$$

Then $D \sim B$ and there is an injection $\varphi : D \to B$. Define an operation \circ as follows:

$$u \circ v := \begin{cases} u * v, & \text{if } set(u) = set(v) \\ (\varphi(u^{(-m)}, v^{(-m)}))^{(m)}, & \text{if } set(u) \neq set(v), m = min\{[u], [v]\} \end{cases}$$

Then (H, \circ) is \mathcal{V}_2 -injective. If φ is a bijection, the set of primes is empty, and thus, by Bruck Theorem, (H, \circ) is not \mathcal{V}_2 -free.

Thus we have proved the following statement.

Corollary 2.3 The class of V_2 -free groupoids is a proper subclass of the class V_2 -inj. \square

3 Injective Groupoids in U and Ur,

The varieties U_l , U_r defined by $xy^2 = xy$, $x^2y = xy$ respectively are considered in [5] and U defined by $x^2y^2 = xy$ in [6]⁹

Let $R = \{t \in F \mid (\forall \alpha, \beta \in F)\alpha\beta^2, \alpha^2\beta \notin P(t)\}$, and let an operation * be defined in R by:

$$t*u = \left\{ \begin{array}{ll} tu, & \text{if } tu \in R \\ \alpha u, & \text{if } t = \alpha^2 \ \& \ \alpha u \in R \\ t\beta, & \text{if } u = \beta^2 \ \& \ t\beta \in R \\ \alpha\beta, & \text{if } t = \alpha^2 \ \& \ u = \beta^2 \ \& \ \alpha, \beta \in R. \end{array} \right.$$

Then $\mathbf{R} = (R, *)$ is the \mathcal{U} -canonical groupoid with the basis B (see 1.3, 1.4 in [6]).

This suggests the following definition of U-injective groupoids.

A groupoid $H \in \mathcal{U}$ is \mathcal{U} -injective iff for each element $a \in H$ which is not prime, there is a unique pair (b,c) of nonidempotent elements such that a=bc. In that case, b=c iff a is an idempotent element.

(Then we say that (b, c) is the pair of divisors of a in H and we write (b, c)|a.) The definition of U-injective groupoids points out the following structural description of the U-injective groupoids (Proposition 2.2 in [6]).

⁹ We note that $\mathcal{U} = \mathcal{U}_l \cap \mathcal{U}_r$.

Proposition 3.1 Let A and A' be two nonempty disjoint sets of the same cardinality, $\varphi: A \to A'$ a bijection, and $\psi: D \to A$ an injection, where

$$D := \{(a,b) \mid a,b \in A, \ a \neq b\}.$$

If we define an operation \bullet on the set $H = A \cup A'$ by: $(\forall a, b \in A, a \neq b)$ $a \bullet b = \varphi(a) \bullet b = a \bullet \varphi(b) = \varphi(a) \bullet \varphi(b) = \psi(a, b),$ $a \bullet a = \varphi(a),$

then we obtain a \mathcal{U} -injective groupoid $\mathbf{H} = (H, \bullet)$ in which $A \setminus \text{im} \psi$ is the set of primes. (In this case we denote \mathbf{H} by $(A, A'; \varphi, \psi)$.)

Conversly, if **H** is a U-injective groupoid with at least two elements, then it is isomorphic with a groupoid $(A, A'; \varphi, \psi)$ defined as above. If ψ in $(A, A'; \varphi, \psi)$ is a bijection, then we obtain that $(A, A'; \varphi, \psi)$ is a U-injective groupoid which is not U-free. \square

We note that a \mathcal{U} -injective groupoid is finite with n elements iff n = 1, 2, 4 (see 2.3 in [6]).

In [5] a U_r -canonical groupoid with a basis B is constructed and the identity $xy^k = xy$, for every $k \ge 1$ is proved. This enables us to state the following system of axioms for the class U_r -inj.

A groupoid H belongs to U_r -inj iff

- (0) H ∈ Ur.
- (1) If $a \in H$, $m, n \ge 1$ are such that $a^m = a^n$, then m = n.
- (2) For each a ∈ H which is not prime in H, there is a unique pair (c, d) ∈ H² such that a = bc and c is a base in H and [(∀(b', c') ∈ H²) a = b'c' ⇒ b = b' & c is the base of c'.]

Here, an element c of a groupoid $H \in \mathcal{U}_r$ is a base in H iff

$$(\forall d \in H)c = d^k \Rightarrow k = 1.$$

(We note that the axiom system for U_r -inj in [5] is more "economical" one, but the later is more "convinient for applications"; anyway, they are equivalent.)

Bruck Theorem (for \mathcal{U} and \mathcal{U}_r) (proved in [5] and [6]) can be shown here in the same way as for \mathcal{U}_n in section 1.

At the end, we will state some remarks.

Remark 1. The varieties \mathcal{U} , \mathcal{U}_l and \mathcal{U}_r are special cases of the variety $\mathcal{V}^{(m,n)}$ defined by $x^m y^n = xy$, where $m, n \geq 1$ [9].

Remark 2. The groupoids constructed in Example 1.5 and Example 2.2 depend essentially on the corresponding canonical groupoid. If we have constructed an example of \mathcal{V} -injective groupoid that is not \mathcal{V} -free not depending on the \mathcal{V} -canonical groupoid, we might be able to give a description of the class \mathcal{V} -inj (as for the class \mathcal{U} -inj in Proposition 3.1)..

Remark 3 The authors have investigated other varieties, as well (e.x. [7], [8] and [9]) and have given a description of V-canonical groupoids.

Remark 4. In the varieties of left-zero groupoids (defined by xy = x) and constant groupoids (defined by xy = uv) each groupoid is free, and thus the class of \mathcal{V} -free groupoids coincides with the class of \mathcal{V} -inj. Bruck Theorem is obviously valid in these two cases, but no subclass different from the variety \mathcal{V} could be obtained.

References

- [1] R.H.Bruck: A Survey of Binary Systems, Springer-Verlag, 1958
- [2] P.M.Cohn: Universal Algebra, Harpers Series in Modern Math., 1965
- [3] G. Čupona, N. Celakoski: Free Groupoids with xⁿ = x, Proceedings of the I Congress of Mathematicians and Informaticians of Macedonia, (1996), 5-16
- [4] G. Čupona, N. Celakoski: Free Groupoids with (xy)² = x²y², Contributions, Sec. Math. Tech. Sci., MANU, 17, 1-2(1996),5-17
- [5] G. Čupona, N. Celakoski: Free Groupoids with xy² = xy, Bilten SDMI 21 (XXI) 1997, 5-16
- [6] G. Čupona, N. Celakoski: On Groupoids with the Identity x²y² = xy, Contributions, Sec. Math. Tech. Sci., MANU, XVIII, 1-2(1997),5-15
- [7] G. Čupona, N. Celakoski, B. Janeva: Free Groupoids with the Axioms of the Form x^{m+1}y = xy and/or xyⁿ⁺¹ = xy, N.Sad J. of Math. Vol 29 No 2. (1999)131-147, Proc. VIII Conf. "Algebra & Logic" (Novi Sad 1998)
- [8] G. Čupona, N. Celakoski, B. Janeva: Varieties of Groupoids with the Axioms of the Form x^{m+1}y = xy and/or xyⁿ⁺¹ = xy, Matematicki glasnik, (received by the editors)
- [9] G. Čupona, N. Celakoski, B. Janeva: Canonical Groupoids with $x^m y^n = xy$, Bull. Math. (1999)