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Abstract: A canonical description of [ree objects in the variety V of
groupoids defined by the identity xx* = v’x? is given. Injective groupoids
in V and subgroupoids of frec groupoids in vV are considered. It is shown
that the class of free proupoids in V is a proper subclass of the class of
injective groupoids in v and that both classes are hereditary.

0. Introduction

Throughout the paper we denote by F = (F, - ) a given absolutely free groupoid
with a basis B (i.e. groupoid free in the class of all groupoids). It is well-known
[1: L.1.5.]) that the following two conditions caracterizes F: a) F is injective'" ; b) the
set B of prime elements in F is nonempty and generates F.

The subject of this paper is the varicty of groupoids of rank 1.” defined by the
identity "

xx? =xx?, (0.1)
. which we denote by V . The paper is divided into three sections.

In Section | we give a deseription of Vv -free groupoids and show that they
may be different.

In Section 2. the notion of V -injective groupoid (i.c. groupoid injective in v )
is introduced. It is shown that: the class of V -injective groupoids is hereditary, every v
-injective groupoid is infinite and the class of V -free groupoids is a proper subclass of
the class of injective groupoids.

In Section 3 are considered subgroupoids of V -free (i.e. free in V) groupoids.
We prove that: Bruck Theorem for v holds, the class of V -free groupoids is hereditary
and that every V -free groupoid contains a subgroupoid with an infinitc basis.

1. Free objects in V

For a construction of a free object in a variety V. of groupoids with an axiom
/= g the following "procedure” is often convenient. We consider one of the two parts
of the axiom of V as "more suitable”, and. as a candidate for the carrier of the desired
free object, we choose the set R of all elements te F ) which contain no parts with
a form of the "unsuitable side of the axiom".

" We do not define bere the notions as: injective groupoid, prime element, length | v]and set P(v) of parts of
ve F, .. (see forexample [2]).

“' A vanety defined by identities wich contain only one variable is called a varien of rank 1.

Y Here we use the usual abbreviations: xx* = x(xx), 2°x" = (xx}Nxx).
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Y F=(F.-), asabove, isan absolutely free groupoid with the free basis A.
Here we consider the variety V. with an axiom xx? =x’x” . Choosing the left side as
"unsuitable", we obtain:
R={te F: (VaeF) aa’¢ P(t)}> (1.1)
By (1.1) immediately we obtain:

a) Viue FfueRe tueR & u#il},
b) tueR = {tue Reu=1*}.
¢) te R = (Vke N) *e R}® (1" isdefinedin F by: =1, t""'=1"1).
Define an operation * on R by:
tu, f tue R
)2, it u=1%
By a direct verification we obtain that R = (R, #) is a groupoid, the equality
(0.1) holds in R (i.e. t*(t*t)=(t*1)*(t*¢) is an identity in R) which means that
R €V and for any mapping A: B — G ", there is a homomorphism @: F — G which
extends A. Therefore:
Theorem 1. R = ( R, *) is a free groupoid in V with the basis B, and B
coincides with the set of primes in R.

tLue R= r*u={ (1.2)

Bellow we will state some propertics of the groupoid R, but first we will
consider the groupoid power x'*), k>0, defined by:
O =y, k1) = (k) () {x(k})Z (13)

By induction on m and n one can show that, in any groupoid G= (G, -), the
following statcment is truc:

(Vxe G, m, n20) (x'™)" = xm+m (1.4)
If Ge v, thenby (1.3) and (0.1) one obtains:
(Vxe G, p=0) xPxP+D = x(p+2) (1.5)

We say that an element @€ G is a power in G if there are be G and
k=1, such that a=b®) If be G isnota power in G, i.e.
(Vee G) (c=b'" = p=0),

then we say that b isa base in G.
As a special case of ¢), one obtains:

¢) teRkzl = (B e R,
Note that, if £€ R, t" is the n-th power of 7 in F; in this sence, #,” is the
n-th power of ¢ in R, defined by: t) =1, 1" =1," *e.

From (1.2) and ¢') , by induction on £, we obtain:

9 P(t) is the set of parts (i.e. subterms) of /.
® N isthe set of positive integers.
' The carrier of a given groupoid § is denoted by the same (light) letter S.



d) (VeeR k20) (=1 and for k21: & =¢*

As a concequence of d), we obtain the following two statements.
Proposition 1.1. (Yue R)(3!(t, p)e Rx Nn)s} 0= r,‘,"’ , where 1 is a base in
R.

Proposition 1.2. a) If xe R\ B (i.e. x is not prime in R) and if x is not a
power, then there exists a unique pair (u,v)e R, such that x=u#v. (In this case
x=uv.)

(We say that (u.v) is the pair of divisors of x and write (u, v)| x)

b) If xeR is a power, x=t"" p>0, then x=1P /P and
(", (7)Y is the pair of divisors of x.

The class of groupoids free in V will be denoted by V ;.. . We will show the
following

Propopsition 1.3. [f HeV ., with the basis B, then there exists a mapping
x> |x[ Srom II into N such that

[6]=1, |cd|2 |c|+|d]. (1.6)
forany be B, c,de H .
Proof. Let R = (R, *) be the V -canonical groupoid with the basis B (con-
structed above, Th.1) and let x - | x| be the restriction of the mapping | |: F — N.
Let r, ueR. Since t, u €F, it follows that |Iu|-—-|£'+|u| and |£Il|=3|r|. From (1.2)
we obtain:

me R = |£*u|=|l|+|u| ,

weR = u=0>=

I*-‘IZ|=| (r3)3|= 4] >3 el
This shows that |7%u| 2| 1|+|u]

Now, let HeV ;. with the basis B. Since H is isomorphic with R, it follows
that (1.6) holds.
23

Remark 1.4. When one decides which side of the identity x?=x2x? to
consider as "suitable" one, it is natural to choose the "shorter" side, i.e. xx’, and expect
a shorter construction of V -free groupoid. However, it turns out the opposite. the
construction is longer and more complicated.

Namely, let the first candidate for the carrier of V -free groupoid be the set
Fy, defined by:

F={teF:(VaeF) (a*)*e P(1) }.

" Ny is the set of nonnegative inlegers.
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If we define an operation *; on [ by:

w, if meF

Lue = t¥ u= 5 2
ao”, if =u=0

then we obtain that F, = ( 7}, #, ) is a groupoid. However, the equality (0.1), which
has the form here
£ (1% 1) = (1% 1) % (1%, 1) (1.7)

is not satisfied in F, , i.e. F, ¢ V . Namely, if /=0, the left side of (1.7) is
a?(ea®) and the right one is (cer®)” . This result implies that
o () = (aa?)? (1.7
is an identity in V . This sugests a definition of a new "candidate" F, = (F3, %) :
Fy={1e F: (VYae ) (aa’) e P(1)},
’*I u, if !*[“E FZ
Lueh s thu=s , 5 >
o (aa”), if t=u=0a"
Checking (1.7) (when #; is substituted by *; ), we obtain F, ¢V and one
more identity in V :
(Yo (ae?)) = (o (a0 (1.7")
Continuing this procedure, we can see a regularity in the concequences of the
identity (1.7), which sugests to introduce a special kind of groupoid power x — x*"~
defined by:

5 . )
x<[1> =x, xclz; =22, x<k+2:- ::xd >x<x+|> § (1.8)

Using this, we defne the following infinite set of groupoids:
{Fp=(Fy, %, )inzlj,
F,={1eF: (YaeF) (@)’ e P},
a, if tue F

2 <1>

oo

tue = t*u=
it t=u=a

Fpo={1€F,: (YaeF,) (@")’ ¢ P(1)},
tx,u, if e F,,,

a<n+2>

t,ue F!H":; ’*PH']”:{ s

, if t=u=0
One can show that F,.., 1s a groupoid such that F,., ¢ V.
Using the fact that Fo F} 2...2F, 2... and that F,.; is "better" than F,,
we obtain the following definition of the carrier R' ofa free groupoid in V
R'={te F: (Yae F,n21) (@">) e P()} N {F,:n21}).
(Note that it is not necessary to define the whole sequence, because the desired

"good candidate" can be noticed after several steps.)
We define an operation * on R' by
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., if meR
Lue R's t*u=3 15 oy
Q= it t=nsac L n2d

and obtain:
Proposition 1.5. R' is a V -free groupaoid with the bhasis B.

Therefore, there exist at least two distinct V -free groupoids, R and R'. Since
R and R' have the same basis B, they are isomorphic.

2. Injective groupoids in V

We obtain the class of injective groupoids in V from the class of V -free grou-
poids in the same way as in the variety of all groupoids (and, namely, by omiting the
condition that the set of primes is a generating set),

Using Pr.1.1 = 1.2, we come to the following definition of injective groupoids in V.

We say that a groupoid H = (H.-) € V isinjective in V ( i.e. V —injective) iff
the following conditions are satisfied:
(i\) (Vae H)3!(b, p)e HxNy) a=b'""" and b isabascin H.
(We say that b is the base and p the exponent of a.)
(i) BP D =cd iff [e=d=bP or (c=bP) & d ="y,

(ii) If b isabasein H, then: b —cd & c=d=b.
(iii) If ae H isa base which is not prime in H, then

AYe.d)e Y a=cd,czd.

The pair of divisors (¢,d) of an element a € H which is not prime in H
(we write: {c:.d)' a ) s defined as follows.

)If b isabasein H and p >0, then (b7, h””)' ptPHh

DIf a cﬂ 1s a base in M, then ['c.d)l a.

We denote by v,,; the class of injective groupoids. By Pr.1.1—1.2 we obtain:

Proposition 2.1. V. C V.

Proposition 2.2. Let HeV,;, Q<H, a=b""eQ and be(Q. where b
is the base of @ in H . If r=min{k: p) e 0}, then ") s a prime in Q.

As a corollary of Pr.2.2, we obtain the following

Proposition 2.3, The class V,,, is hereditary.

If P =a"" andc,d are bases in He Vs then ¢ =d & p = g. Therefore,
if a is a base in H, then the powers 2, n>1, are mutually distinct and thus the set

la, UL i is infinite. Therefore:
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Proposition 2.4. Every HeV,, is infinite.

Rellow we will give a construction of V -injective groupoids (and show that
there are V -injective groupoids which are not v —free).

Let 4 be an infinite set and H = AxN . Define a partial operation ® on /' by:

(a,p)e(a,p)=(a,p+]),
(a,p)e(a,p+)=(a,p+2)
and put
D={({(a,p).(b,q)): a#b or (a=b & g {p, p+1}}.

Since A and D have the same cardinality, there is an injection @: D— A4 and
we can put

(M(a,p).(b.q)e D) (a,p)*(b.q)=(p((a, p)(b,¢)),0) .
Then we obtain that (71, ) is a groupoid injective in V .
If @ is a bijection, then the set Ax{0} \ im¢ of primes in H is empty, and thus
(I1, *) is not free in V.
This and Cor.2.1 proves the following

Theorem 2. The class V .. is a proper subclass of V.

3. Subgroupoids of V —free groupoids

In this section we will show that the class V ;. is hereditary, but first we will
give a caracterizatin of V -free groupoids (analogous to a), b) in Introduction, for abso-
lutely free groupoids).

Theorem 3 (Bruck Theorem for V). A groupoid HeV is V -free iff:

(1) His V—injective.

(1) The set B of primes in H is nonempty and generates H.

Proof. If H is V -free with the basis B, then HeV,,, (by Th.2), B is the set of
primes in H and generates H.

For the converse, define an infinite sequence of subsets By, By, ... of 1T
B| o B, Bz = {Cd: C,dE B[},
Byyy ={ae HH : (c.d)|la= {c.d} < B U...U By &{c.d}N B, #D}.
Then the following statements are true:

1) (Vk21) By #2@D; 2) p#q=B,NB, =@; 3) H=U{By:k21}.

Let GeV and A: B — G be a mapping. Defining a sequence of mappings
¢ By — G inductively (¢, = A; ...) and continuing in a similar way as in [2: Th.1].
one can show that the mapping @ =[J{¢; :k =1} is a homomorphism from H into G
which extends A.

Below we assume that HeV .. and @ is a subgroupoid of H.

Proposition 3.1. The set P of primes in Q is nonemply and generates Q.
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Proof. By Pr.1.3, there is a mapping in /{ with the property (1.6). Let ce Q
be such that
|r;|={min |a|:ae 0}
(3.1)
By (1.6) and (3.1), ¢ is prime in . Thus the set P of primes in @ is nonempty.
Denote by T the groupoid generated by P. Clearly, T < O . We will show that

Q c T, using induction on length.

Firstofall, PcT.If be @ and |bI: 1, then b is prime in H, and thus 5 is
primein @, ir.e. he P. Therefore he 7. Suppose ce 0 & |t‘|£k = ceT.

Let ce O and |r:|——- k+1.1f ce P, then c e T. Therefore let ce O \P. Then
c=de (d,eeQ), and:

|c}=|de|2|d|+|e| = |d|.|el£k = deeT= c=deeT.

Thus O ¢ T and therefore P generates Q.

Proposition 3.2. QeV ;.. .

Proof. By Pr.2.1, HeV g, implies HEV ;,; . and by Pr.2.3, @ €V ,,; . Now,
applying Bruck Theorem for V. we obtain that QeV 4., .

As a corollary of Pr.3.2 we obtain

Proposition 3.3. The class V .. is hereditary.
Finaly, we will prove the following

Proposition 3.4. [ HEV ... . then there is a subgroupoid Q such that () has
an infinite basis.

Proof. Let B be the basis of H and ae B. Put

€] =a+a, Ca =C|dsuis Chyy =Cf i
and let @ be the subgroupoid of H generated by the set C ={cj :k>0}. Then: 1)
C'is infinite; 2) all the elements in C are prime in @; 3) C is a basis of Q.

Namely, the clements of ' are mutually distinct (ep=c;, = p=4q) and
thus C is infinite. Secondly, every element ¢, € C is a base in Q: ¢, =aa =a”, but
a¢ Q and thus ¢, is a base in Q: ¢, =a’a=a’, a*c Q.,but ae O, and thus ¢, is a
base in @; inductively, ¢;., = a*a isabase in Q. Thirdly, C is the set of primes in Q,

C #J and generates Q. Therefore, C is the basis of Q.
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