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FREE GROUPOIDS DEFINED BY THE IDENTITY (zy)y = yz

S. Markovski, L. Goraéinova Ilieva and A. Sokolova

Abstract. A construction of free groupoids in the variety V' defined by Stein identity
(zy)y = yx [1] is given. The construction is canonical i.e. the free groupoid is constructed with
universe a subset of the absolutely free groupoid and suitably defined operation. In fact a countable
closed set of identities that are consequences of the defining one is obtained.

Stein identities 7y - y = yx and z - zy = yz, which are dual to each other, are
interesting from many aspects. For each quasigroup satisfying any of the stated
identities there is an orthogonal mate which is a quasigroup as well [1]. Stein
identity together with zy-yz = z (z-zy = y) define a class of cancellative groupoids
with the following property: every groupoid generated by two elements has exactly
four (five) elements [5].

In what follows V will denote the variety of groupoids satisfying the identity
Ty -y = yz.

PROPOSITION 1. Let (G,-) be a V-groupoid. Then for each z,y € G

(i) z-yz =2y - x;

(i) 2% st =22

Proof. (i) z-yz = (yz-z)z =2y - 2;

()22 2? = (P x) =) 2’ =22 s=2’.n

Let B # 0 and let Tg = (T, ) denote the absolutely free groupoid with a free
base B. Define length |u| of a term u € T inductively by

vw€EB = luj=1, uw=vw = |u|=|v]+]|uw|

By t(z) we denote a term ¢ in which only one variable z appears. Also t(u)
will denote the term obtained from ¢(z) by replacing each occurrence of z by the
term u. Further on |u|, will denote the number of occurrences of  in t. The next
statement is a consequence of Proposition 1 (i), (i¢) and the defining identity.

COROLLARY 1. Ift = t(u) and t # u, thent = u? is true in V. @
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We also need to define some notions that will abbreviate the denotation of
some special forms of products. The definition is inductive.

n+1),

20y =y, 2y =ay, 2"ty = 2. (zt"y)

‘Let S = {u € Tp| u does not contain a subterm of the forms (1)-(5)}.
(1) t(u), v € Tp, |ulyu) > 2
(2) ((wo)™ (vu))((uv)™u)
(3) ((uwv)™u)((ur)™ (vu))
(4) ((wv)™ D u)((uwr)™ (vu))
(3) ((wv)™ (vu))((uwv)™+ )
wheren >0, u,v€ Tg, u#wv. Fort,s € S let

(13, ts€ S
u?, t = t(u), s =su)
uv, ts = ((uwv)™ (vu))((uv)™u)
TSN o, ts = ((w0) ™) ()™ (ou)
uv, ts = ((wv) ™t Vu)((uv)™ (vu))
[ (o)) vu, ts = ((wo)™ (vu))((wo) ")

where n >0, u,v € T, u # v.

We intend to prove that (.S, %) is a free groupoid in V. The form (1) is a result
of Corollary 1. For (2)-(5), as well as the corresponding products, one can find
justification in the following property.

PROPOSITION 2. In any V-groupoid (G, -) the following hold:

(a) ((uv)™ (vu))((uv){™u) = wv, n >0, u,v € G,

(0) ((wo)™Mu)((wo)™ (vu)) = (o)1) -u, n 20, u,v € G,

(¢) ((wo) ™ V) ((wv)™ (vu)) = wv, n 20, w,v € G,

(d) ()™ (vu))((wo) ") = (wo) ) vy, n >0, u,v €G.

Proof. We prove (a), (b), (¢) and (d) simultaneously by induction on n. For
n = 0, (a) is the identity vu-u = uv; (b) is the statement (i) of Proposition 1; for (¢)
we use Proposition 1 (i) and the defining identity and get (uv-u)-vu = (u-vu)-vu =
(vu)u = wv; and by similar transformations vu - (v - u) = ((uv - u) - vu) - vu =
((u-vu) - vu) - vu = (vu - u) - vu = wv - vu, i.e. (d) holds.

Assume that (a), (b), (¢) and (d) hold in (G, -) for n. Then
((wo)™+1 (vw)((wo) ™+ w) ‘L™ ((wo)™ (0u)) - (o) ™+Dw)), ((ue)+u) =
((wv) ) - ((uv){™ (vu)) Q uv, hence (a) holds.

Also  ((wo)"Du)((wo)" M (vu)) = ((w)"(vu)) - ((wo)**tu)).,
((ww){m+ ) (@2t . ((wv)™ V) = (uv)™t2)y, so (b) holds.
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We obtain (c) in the following way ((uv)™ 2 u)((uv)™ ) (vu)) Brzs?
(((wr) ™+ D) - ((w0)™+D (vw))) - ((w0)" ) (vu)) = ((wo) ™) (wa)) - ((wv) P+ y)

(a),n+1
= Utk

Finally, (d) holds since

- (o)™ () (wo) ™ D) = (((w0)"+2u) - ((wo) ) (vw)) - ((wo) ™+ (vu))
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Wl (uv)"+ 1) (vu)) = (wv)"t2) (vu).
Note that if uv is of the form (2) or (4) then vu is of the form (3) or (5)
respectively, and vice versa. Therefore, S has the following property.

PROPOSITION 3. Ifuv € S thenvu € S. =

Now we can prove the main result of this note.

THEOREM 1. (S, *) is a free groupoid in V with a free base B.

Proof. By careful examination of the forms (1)-(5) it is clear that they are
mutually exclusive. Let t,s € S. If ts is of form (1), then t*s =u? € S. If ts is
of form (2) or (4) then wv or vu is a subterm of ¢ hence, by Proposition 3, uv € S.
Finally, if ts is of form (3) or (5) then t * s = wv - ¢t by definition and as before
uv,t € S; by checking all the forms it is clear that uv -t € S where t = (uv){™y
or t = (uv)‘™ (vu) respectively. Hence, (S, %) is a groupoid such that B C S. Also,
(S, %) is generated by the set B since if uv € S then wv = u * v and we can use
induction on the length of terms. '

Next we show that (S, %) € V. Let z,y € S. We check whether (zxy)*y = y*a
by distinguishing six cases for the product z * y. '

(i) z *y = zy:  Then, by Proposition 3, y * z = yx and xy *y = yx since
(zy)y = ((y2) ) (zy)) - ((y2)Oy).

() zry=1u? z=x(u), y=y(u): (z*xy)xy=v’*ylu)=v?=y=*z

(i61) zxy = wv, * = (W)™ - (vu), y = (W)™ -w:  (Try)ry=uwv*y=
(uv) * (wv)™ - u = (W) cu =y * 2.

(v) z*y = (o)™t .y, x = (W)™ .y, y = (o)™ - (vu): (zxy)xy=
((w0) 1) ) # (wo)™ - (vu)) = wv = y * .

W) zxy = w, £ = (wo)™*) .y, y = (W)™ - (vu):  (T*y)*y = uv*
((wo)™ - (vu)) = (w0) ™V - (vu) =y + .

(i) zxy = (w)"tD) (vu), z = (W)™ - (vu), y = (wo)™) w: (zxy)*ry =
((wo) " - (vu)) * (o)) ) = ww =y * <.

Finally, let (G,-) € V and f: B — G a mapping. Then f : S — @G, defined
by f(b) = f(b) for b € B and f(uv) = f(u) o f(v) for uv € S\ B, is the desired
homomorphism, by Proposition 2. ®
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